1.15 The Amazing Inverse Race

Practice

I. Distance Formula

Find the distance from the origin (0, 0) to the given point in the rectangular plane.

1. A (8, 6)

2. P(-5,-6)

3. F (-7, 7)

Н		\vdash		Н		H	\vdash		⊢
Н		\vdash		Н		H	\vdash		⊢
H				H		H			H
Н		\vdash		\square		H	\vdash		┝
Н		H		Η		Н	\vdash		⊢

4. R (3, 44)

Н												
н	-	-	-		-	-		-			-	-

5.
$$G(\sqrt{3}, 1)$$

5. In each graph, the angle of rotation is indicated by an arc and θ . Describe the angles of rotation from 0 to 2π that make tangent θ be positive and the angles of rotation that make tangent θ be negative.

II. Inverse Trig Functions

Use the given information to find the missing angle $(0 \le \theta \le 2\pi)$. Round answers to thousandths place (3 decimal places).

7. $\cos \theta = 0.9848$; $\sin \theta > 0$ 8. $\sin \theta = 0.9925$; $\tan \theta < 0$ 9. $\cos \theta = 0.0872$; θ is in Quadrant IV 10. $\tan \theta = 0.3839$; $\cos \theta < 0$ 11. $\cos \theta = 0$; $\sin \theta > 0$ 12. $\sin \theta = -0.1908$; $\tan \theta > 0$ 13. $\tan \theta = -0.4663$; $\sin \theta > 0$ 14. $\tan \theta = -0.4663$; $\cos \theta > 0$ 15. $\tan \theta = -1$; $\sin \theta > 0$ 16. $\sin \theta = -1$

17. Explain why #16 needed only 1 clue to determine a unique value for θ , and #7 – 15 required at least 2 clues.

II. Arc Length

Recall the formula for arc length: $s = r\theta$, where θ is always in radians. Write your answers with π in it. Then use your calculator to find the approximate length of the arc to 2 decimal places

18. Find the length of an arc given that r = 10 in and $\theta = \frac{\pi}{4}$.

19. Find the arc length given r = 4 cm and $\theta = \frac{5\pi}{6}$.

20. Find the arc length given r = 72.0 ft and $\theta = \frac{\pi}{8}$.

21. Find the arc length given r = 0.892 mm. and $\theta = \frac{11\pi}{10}$.

