1.15 The Amazing Inverse Race

Practice

I. Distance Formula

Find the distance from the origin $(0,0)$ to the given point in the rectangular plane.

1. $\mathrm{A}(8,6)$

2. $R(3,44)$

3. $F(-7,7)$

4. $Q(3, \sqrt{7})$

5. In each graph, the angle of rotation is indicated by an arc and θ. Describe the angles of rotation from 0 to 2π that make tangent θ be positive and the angles of rotation that make tangent θ be negative.

II. Inverse Trig Functions

Use the given information to find the missing angle ($0 \leq \theta \leq 2 \pi$).
Round answers to thousandths place (3 decimal places).
7. $\cos \theta=0.9848 ; \quad \sin \theta>0$
8. $\sin \theta=0.9925 ; \quad \tan \theta<0$
9. $\cos \theta=0.0872 ; \quad \theta$ is in Quadrant IV
10. $\tan \theta=0.3839 ; \quad \cos \theta<0$
11. $\cos \theta=0 ; \quad \sin \theta>0$
12. $\sin \theta=-0.1908 ; \tan \theta>0$
13. $\tan \theta=-0.4663 ; \quad \sin \theta>0$
14. $\tan \theta=-0.4663 ; \quad \cos \theta>0$
15. $\tan \theta=-1 ; \quad \sin \theta>0$
16. $\sin \theta=-1$
17. Explain why \#16 needed only 1 clue to determine a unique value for θ, and \#7-15 required at least 2 clues.

II. Arc Length

Recall the formula for arc length: $s=r \theta$, where θ is always in radians. Write your answers with π in it. Then use your calculator to find the approximate length of the arc to 2 decimal places
18. Find the length of an arc given that $r=10$ in and $\theta=\frac{\pi}{4}$.

19. Find the arc length given $r=4 \mathrm{~cm}$ and $\theta=\frac{5 \pi}{6}$.
20. Find the arc length given $r=72.0 \mathrm{ft}$ and $\theta=\frac{\pi}{8}$.
21. Find the arc length given $r=0.892 \mathrm{~mm}$. and $\theta=\frac{11 \pi}{10}$.

