1.12 Getting on the Right Wavelength

Practice
I. Using the definition of tangent

Use what you know about the definition of tangent in a right
 triangle to find the value of tangent θ for each of the right triangles below.

1. $\tan \theta=$

2. $\tan \theta=$

3. $\tan \theta=$

4. In each graph, the angle of rotation is indicated by an arc and θ. Describe the angles of rotation from 0 to 2π that make tangent θ be positive and the angles of rotation that make tangent θ be negative.

II. Transformations of Trig Graphs

Match each trigonometric representation on the left with an equivalent representation on the right. Then check your answers with a graphing calculator.
6. $y=-3 \sin \left(\theta+\frac{\pi}{2}\right)$
7. $y=3 \cos \left(\theta+\frac{\pi}{2}\right)$
8.

9.

10. $y=\sin \left(2\left(\theta+\frac{\pi}{2}\right)\right)-2$
11. $y=\sin (x+\pi)$
A. $y=-3 \sin \theta$
B. $y=-\sin \theta$
C.

D.

E. $y=2 \cos \left(\theta+\frac{\pi}{2}\right)-2$
F. $y=\cos (x+\pi)+3$
12. Choose the equation(s) that has the same graph as $y=\cos x$.
a) $y=\cos (\theta+\pi)$
b) $y=\cos (\theta-\pi)$

Use the unit circle to explain why they are the same.
13. Choose the equation(s) that has the same graph as $y=\sin x$.
a) $y=\sin (\theta+\pi)$
b) $y=\sin (\theta-\pi)$

Use the unit circle to explain why they are the same.
14. Why is the average value of a trigonometric function the same as the vertical shift?
15. Where do we see the average value of a trigonometric function in the graph?
16. Why is the average value of a trigonometric function important?

For each function, identify the amplitude, period, horizontal shift, vertical shift, and the endpoints of the primary interval.
17. $f(t)=150 \cos \left(\frac{\pi}{6}(t-8)\right)+80$
18. $f(t)=4.5 \sin \left(\frac{\pi}{4} t+\frac{3}{4}\right)+8$
amplitude:
period:
horizontal shift:
vertical shift:
end points:
amplitude:
period:
horizontal shift:
vertical shift:
end points:

