## 1.10 High Noon and Sunset Shadows

## **Practice**

I. State the period, amplitude, phase shift and vertical shift of the function in the graph. Then write the equation. **Use the same trigonometric function as the one that is given.** 



1.  $y = \sin x$ 



 $2. \ y = \sin x$ 



3.  $y = \cos x$ 



4.  $y = \cos x$ 



9.  $y = \sin x$ 



10. The cofunction identity states that  $\sin \theta = \cos(90^\circ - \theta)$  and  $\sin(90^\circ - \theta) = \cos \theta$ . How does this identity relate to the graph in #9? Explain where you would see this identity in a right triangle.

Describe the relationships between the graphs of f(solid) and g(dotted). Then write their equations.

11.



12.



13. This graph could be interpreted as a shift or a reflection. Write the equations both ways.





Sketch the graph of the function. (Include 2 full periods. Label the scale of your horizontal axis.)

$$15. \ \ y = 3\sin\left(x - \frac{\pi}{2}\right)$$



16. 
$$y = -2\cos(x + \pi)$$



## II. Trig Ratios in the Unit Circle

Name two values for  $\theta$  (angles of rotation) that have the given trig ratio.

17. 
$$\sin \theta = \frac{\sqrt{2}}{2}$$

18. 
$$\cos \theta = \frac{\sqrt{2}}{2}$$

19. 
$$\cos \theta = -\frac{1}{2}$$

20. 
$$\sin \theta = 0$$

21. 
$$\sin\theta = -\frac{\sqrt{3}}{2}$$

$$22. \cos \theta = -\frac{\sqrt{3}}{2}$$

23. For which angles of rotation does  $\sin \theta = \cos \theta$ ?

## III. Assessment - Khan Academy

- 1. Complete the following online worksheet in the Functions unit of Khan Academy's Algebra 2 course:
  - a. <a href="https://www.khanacademy.org/math/algebra2/trig-functions/intro-to-amplitude-and-midline-of-sinusoids-alg2/e/midline-of-trig-functions">https://www.khanacademy.org/math/algebra2/trig-functions/intro-to-amplitude-and-midline-of-sinusoids-alg2/e/midline-of-trig-functions</a>
  - b. <a href="https://www.khanacademy.org/math/algebra2/trig-functions/intro-to-amplitude-and-midline-of-sinusoids-alg2/e/amplitude-of-trig-functions">https://www.khanacademy.org/math/algebra2/trig-functions/intro-to-amplitude-and-midline-of-sinusoids-alg2/e/amplitude-of-trig-functions</a>