1.7 Stakin' It

Practice

I. Finding points on a circle

Given the equation of a circle centered at $(0,0)$, find one point in each quadrant that lies on the given circle.

1. $x^{2}+y^{2}=25$
a) quadrant I :
b) quadrant II:
c) quadrant III:
d) quadrant IV:
2. $x^{2}+y^{2}=4$
a) quadrant I :
b) quadrant II:
c) quadrant III:
d) quadrant IV:
3. $x^{2}+y^{2}=36$
a) quadrant I :
b) quadrant II:
c) quadrant III:
d) quadrant IV:
4. $x^{2}+y^{2}=1$
a) quadrant I :
b) quadrant II:
c) quadrant III:
d) quadrant IV:
5. $x^{2}+y^{2}=9$
a) quadrant I :
b) quadrant II:
c) quadrant III:
d) quadrant IV:

II. Locating Points - Coordinates, Arc length, Reference angle, and Radius

In the diagram triangle $A B C$ is a right triangle. Point B lies on the circle and is described by the rectangular coordinates (x, $y)$.

- s is the length of the arc subtended by angle θ.
- r is the radius of circle A.

Answer the following questions using the given information.
6. B has the rectangular coordinates $(5,12)$.

a) Find r.
b) Find θ to the nearest tenth of a degree.
c) Find s by using the formula $s=\frac{\theta}{360^{\circ}}(d \pi)$.
d) Describe point B using the coordinates (r, θ).
e) Describe point B using the radius and arc length (r, s).
7. B has the rectangular coordinates $(33,56)$.
a) Find r.
b) Find θ to the nearest tenth of a degree.
c) Find s by using the formula $s=\frac{\theta}{360^{\circ}}(d \pi)$.
d) Describe point B using the coordinates (r, θ).
e) Describe point B using the radius and arc length (r, s).
8. B is described by (r, θ), where $\theta \approx 58.11^{\circ}$ and $r=53$.
a) Find (x, y) to the nearest whole numbers.
b) Find s by using the formula $s=\frac{\theta}{360^{\circ}}(d \pi)$.
c) Describe point B using the radius and arc length (r, s).
9. B is described by (r, θ), where $\theta \approx 25.01^{\circ}$ and $r=85$.
a) Find (x, y) to the nearest whole numbers.
b) Find s by using the formula $s=\frac{\theta}{360^{\circ}}(d \pi)$.
c) Describe point B using the radius and arc length (r, s).
10. B is described by (r, s), where $s \approx 46$ and $r=37$.
a) Find (x, y) to the nearest whole numbers.
b) Find θ by using the formula $s=\frac{\theta}{360^{\circ}}(d \pi)$.
c) Describe point B using (r, θ).
11. B is described by (r, s), where $s \approx 62.66$ and $r=73$.
a) Find (x, y) to the nearest whole numbers.
b) Find θ by using the formula $s=\frac{\theta}{360^{\circ}}(2 \pi r)$.
c) Describe point B using (r, θ).

III. Radian Measurement

Label each point on the circle with the measure of the angle of rotation. Angle measures should be in radians. (Recall that a full rotation around the circle would be 2π radians.)

Example 1: The circle has been divided equally into 8 parts. Each part is equal to $\frac{2 \pi}{8}$ or $\frac{\pi}{4}$ radians

Indicate how many parts of $\frac{\pi}{4}$ radians there are at each position around the circle Finish the example by writing the angle measures for points F, G, and H.

Label the figures below using a similar approach as the example.
12.

13.

15.

