
3.3D Nothing Compares to U 
 
 

Integration by Substitution and the 
Reverse Chain Rule 
 
_______________________________________ 
 
The goal of this lesson is to learn how to “undo” 
the process of differentiation to find an algebraic 
antiderivative for composite functions. 

Investigation 1: In Big Idea 2, you learned the 
Chain Rule and how it can be applied to find the 
derivative of a composite function. If u is a 
differentiable function of x, and f is a 
differentiable function of u(x), then 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�𝑓𝑓�𝑢𝑢(𝑥𝑥)�� = 𝑓𝑓′(𝑢𝑢(𝑥𝑥)) ∙ 𝑢𝑢′(𝑥𝑥). 

In words, we say that the derivative of a composite function c(x) = f (u( x)) , where f 
is considered the “outer” function and u the “inner” function, is “the derivative of the 
outer function, evaluated at the inner function, times the derivative of the inner 
function.” 

1a) For each of the following functions, use the Chain Rule to find the function’s 
derivative. Be sure to label each derivative by name (e.g., the derivative of g(x) 
should be labeled g’(x)). 

 i. 𝑔𝑔(𝑥𝑥) = 𝑒𝑒3𝑥𝑥  
 

ii. h(x) = sin(5x + 1) 
 

iii. p(x) = arctan(2x)  
 

iv.  q(x) = (2 - 7x)4    
 

v. r(x) = 34-11x    
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b) For each of the following functions, use your work in (a) to help you determine 
the general antiderivative1 of the function. Label each antiderivative by name (e.g., 
the antiderivative of m should be called M). In addition, check your work by 
computing the derivative of each proposed antiderivative. 

i. m(x) = e3x    

ii. n(x) = cos(5x + 1) 

iii.  𝑠𝑠(𝑥𝑥) =
1

1 + 4𝑥𝑥2 

 

iv. v(x) = (2 - 7x)3    

 

v. w(x) = 34-11x    

 

c) Based on your experience in parts (a) and (b), conjecture an antiderivative for 
each of the following functions. Test your conjectures by computing the derivative of 
each proposed antiderivative. 

 

i. a(x) = cos(π x) 
 

ii. b(x) = (4x + 7)11    
 

iii.  𝑠𝑠(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥2   

 

 

 

 
                                                           
1 Recall that the general antiderivative of a function includes “+C” to reflect the 
entire family of functions that share the same derivative. 
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II. Reversing the Chain Rule: First Steps 

Investigation 1 led you to antidifferentiate a function of the form 

h(x) = f(u(x)), 

whenever f is a familiar function whose antiderivative is known and u x is a linear 
function. For example, if we consider 

h(x) = (5x - 3)6, 

in this context the outer function f is f (u) = u6, while the inner function is u(x) = 5x. 
Since the antiderivative of f is 𝐹𝐹(𝑢𝑢) = 1

7
𝑢𝑢7 + 𝐶𝐶, we see that the antiderivative of h is 

𝐻𝐻(𝑥𝑥) =
1
7

(5𝑥𝑥 − 3)7 ∙
1
5

+ 𝐶𝐶 

=
1

35
(5𝑥𝑥 − 3)7 + 𝐶𝐶. 

The inclusion of the constant 1 is essential precisely because the derivative of the 
inner function is u’(x) = 5. Indeed, if you now compute H ‘(x), you find by the Chain 
Rule (and Constant Multiple Rule) that 

𝐻𝐻′(𝑥𝑥) =
1

35
(5𝑥𝑥 − 3)6 ∙ 5 = (5𝑥𝑥 − 3)6 = ℎ(𝑥𝑥) 

and thus H is indeed the general antiderivative of h. 

Hence, in the special case where the outer function is familiar and the inner function 
is linear, you can antidifferentiate composite functions according to the following 
rule. 

 

 

 

 

 

 

    When discussing antiderivatives, it is often useful to have shorthand notation that 
indicates the instruction to find an antiderivative. Thus, in a similar way to how the 

 If h(x) = f(ax+b) and F is a known algebraic antiderivative of f , 
then h is given the rule 

𝐻𝐻(𝑥𝑥) =
1
𝑎𝑎

(𝑎𝑎𝑎𝑎 + 𝑏𝑏) + 𝐶𝐶  
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notation  

𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑓𝑓(𝑥𝑥)] 

represents the derivative of f (x) with respect to x, one uses the notation of the 
indefinite integral, 

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 

to represent the general antiderivative of f with respect to x. For instance, returning 
to the earlier example with h(x) = (5x – 3)6 above, we can rephrase the relationship 
between h and its antiderivative H through the notation 

�(5𝑥𝑥 − 3)6𝑑𝑑𝑑𝑑 =
1

35
(5𝑥𝑥 − 6)7 + 𝐶𝐶 

When we find an antiderivative, we will often say that we evaluate an indefinite 
integral; said differently, the instruction to evaluate an indefinite integral means to 
find the general antiderivative. Just as the notation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
[∎] means “find the derivative 

with respect to x of ∎,” the notation ∫ ∎ 𝑑𝑑𝑑𝑑 means “find a function of x whose 
derivative is ∎.” 

 

 

 

Investigation 2: Evaluate each of the following indefinite integrals. Check each 
antiderivative that you find by differentiating. 

2a)   � sin(𝑥𝑥 − 3)𝑑𝑑𝑑𝑑 

b)   � sec2(4𝑥𝑥)𝑑𝑑𝑑𝑑 

c)   �
1

11𝑥𝑥 − 9
𝑑𝑑𝑑𝑑 

d)   � csc(2𝑥𝑥 + 1)cot (2𝑥𝑥 + 1)𝑑𝑑𝑑𝑑 
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e)   �
1

√1 − 16𝑥𝑥2
𝑑𝑑𝑑𝑑 

f)   � 5−𝑥𝑥 𝑑𝑑𝑑𝑑 

 

III. Reversing the Chain Rule: u-substitution 

Of course, a natural question arises from our recent work: what happens when the 
inner function is not a linear function? For example, can we find antiderivatives of 
such functions as 

𝑔𝑔(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑥𝑥2    and   ℎ(𝑥𝑥) = 𝑒𝑒𝑥𝑥2  

It is important to explicitly remember that differentiation and antidifferentiation are 
essentially inverse processes; that they are not quite inverse processes is due to the 
+C that arises when antidifferentiating. This close relationship enables you to take 
any known derivative rule and translate it to a corresponding rule for an indefinite 
integral. For example, since 

𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑥𝑥5] = 5𝑥𝑥4 

you can equivalently write 

� 5𝑥𝑥4 = 𝑥𝑥5 + 𝐶𝐶. 

Recall that the Chain Rule states that 

𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑓𝑓(𝑔𝑔(𝑥𝑥))] = 𝑓𝑓′(𝑔𝑔(𝑥𝑥)) ∙ 𝑔𝑔′(𝑥𝑥) 

Restating this relationship in terms of an indefinite integral, 

� 𝑓𝑓′�𝑔𝑔(𝑥𝑥)� ∙ 𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑓𝑓�𝑔𝑔(𝑥𝑥)� + 𝐶𝐶                            𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏 

Equation 1 reveals that if we can take a given function and view its algebraic 
structure as 𝑓𝑓′(𝑔𝑔(𝑥𝑥)) ∙ 𝑔𝑔′(𝑥𝑥) for some appropriate choices of f and g, then we can 
antidifferentiate the function by reversing the Chain Rule. It is especially notable 
that both g(x) and g ’(x) appear in the form of 𝑓𝑓′(𝑔𝑔(𝑥𝑥)) ∙ 𝑔𝑔′(𝑥𝑥) ; we will sometimes 
say that we seek to identify a function-derivative pair when trying to apply the rule 
in Equation 1. 
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In the situation where you can identify a function-derivative pair, simply introduce a 
new variable u to represent the function g(x). Observing that with u = g(x), it follows 
in Leibniz notation that 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑔𝑔′(𝑥𝑥), so that in terms of differentials2, du = g’(x) dx. 

Now converting the indefinite integral of interest to a new one in terms of u, you get 

� 𝑓𝑓′(𝑔𝑔(𝑥𝑥)) ∙ 𝑔𝑔′(𝑥𝑥) = � 𝑓𝑓′(𝑢𝑢)𝑑𝑑𝑑𝑑. 

Provided that f , is an elementary function whose antiderivative is known, you can 
now easily evaluate the indefinite integral in u, and then go on to determine the 
desired overall antiderivative of 𝑓𝑓′(𝑔𝑔(𝑥𝑥)) ∙ 𝑔𝑔′(𝑥𝑥). This process is called u-
substitution. To see u-substitution at work, consider the following example. 

 

Example 1: Evaluate the indefinite integral 

� sin (7𝑥𝑥4 + 3) ∙ 𝑥𝑥3𝑑𝑑𝑑𝑑 

and check the result by differentiating. 

Solution.  Notice that x3 is almost the derivative of 7x4 + 3 ; the only issue is a 
missing constant.  

   Let u represent the inner function of the composite function sin 7x4 + 3 , we have u 
= 7x4 + 3, and thus 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 28𝑥𝑥3. In differential notation, it follows that du = 28x3 dx, 

and thus x3 dx = 1 du. The original indefinite integral may now be written 

� sin (𝑢𝑢) ∙
1

28
𝑑𝑑𝑑𝑑 

1
28

� sin (𝑢𝑢)𝑑𝑑𝑑𝑑 

1
28

(− cos(𝑢𝑢) + 𝐶𝐶 

                                                           
2 If you remember from the definition of the derivative that 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
≈ Δ𝑢𝑢

Δ𝑥𝑥
 and use the fact 

that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔′(𝑥𝑥), then you will see that 𝑔𝑔′(𝑥𝑥) ≈ Δ𝑢𝑢
Δ𝑥𝑥

. Solving for u, ∆𝑢𝑢 = 𝑔𝑔′(𝑥𝑥)∆𝑥𝑥. It is 
this last relationship that, when expressed in differential notation enables us to 
write du = g’(x) dx in the change of variable formula. 
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Now substitute the original inner function in place of u and you get 

1
28

(− cos(7𝑥𝑥4 + 3) + 𝐶𝐶 

To check your work, observe by the Chain Rule that 

𝑑𝑑
𝑑𝑑𝑑𝑑

[
1

28
(− cos(7𝑥𝑥4 + 3) + 𝐶𝐶] = −

1
28

∙ (−1)sin (7𝑥𝑥4 + 3) ∙ 28𝑥𝑥3 

= sin (7𝑥𝑥4 + 3) ∙ 𝑥𝑥3 

which is indeed the original integrand. 

 

Investigation 3: 

3. Evaluate each of the following indefinite integrals by using these steps: 

• Find two functions within the integrand that form (up to a possible missing 
constant) a function-derivative pair; 

• Make a substitution and convert the integral to one involving u and du; 
• Evaluate the new integral in u; 
• Convert the resulting function of u back to a function of x by using your earlier 

substitution; 
• Check your work by differentiating the function of x. You should come up with 

the integrand originally given. 

3a)  �
𝑥𝑥2

5𝑥𝑥3 + 1
𝑑𝑑𝑑𝑑 

 

b)  � 𝑒𝑒𝑥𝑥 sin(𝑒𝑒𝑥𝑥) 𝑑𝑑𝑑𝑑 

 

c)  �
cos (√𝑥𝑥)

√𝑥𝑥
𝑑𝑑𝑑𝑑 

 

 



3.3c Fundamental Theorem of Calculus, Part 2 Page 8 
 

IV. Evaluating Definite Integrals via u-substitution 

You have just learned u-substitution to evaluate indefinite integrals of functions that 
can be written, up to a constant multiple, in the form 𝑓𝑓′(𝑔𝑔(𝑥𝑥)) ∙ 𝑔𝑔′(𝑥𝑥). This same 
technique can be used to evaluate definite integrals involving such functions, though 
you must be careful with the corresponding limits of integration. Consider, for 
instance, the definite integral 

� 𝑥𝑥𝑒𝑒𝑥𝑥2

5

2

𝑑𝑑𝑑𝑑 

Whenever you write a definite integral, it is implicit that the limits of integration 
correspond to the variable of integration. To be more explicit, observe that 

� 𝑥𝑥𝑒𝑒𝑥𝑥2

5

2

𝑑𝑑𝑑𝑑 = � 𝑥𝑥𝑒𝑒𝑥𝑥2𝑑𝑑𝑑𝑑.
𝑥𝑥=5

𝑥𝑥=2

 

When you execute the u-substitution, change the variable of integration; it is 
essential to note that this also changes the limits of integration. For instance, with 
the substitution u = x2  and du  = 2x dx, it also follows that when x = 2, u = 22 = 4, 
and when x = 5, u = 52 = 25. Thus, under the change of variables of u-substitution, 
you now have 

� 𝑥𝑥𝑒𝑒𝑥𝑥2𝑑𝑑𝑑𝑑 = � 𝑒𝑒𝑢𝑢 ∙
1
2

𝑢𝑢=25

𝑢𝑢=4

𝑑𝑑𝑑𝑑
𝑥𝑥=5

𝑥𝑥=2

 

=
1
2

𝑒𝑒𝑢𝑢|𝑢𝑢 = 25
𝑢𝑢 = 4  

1
2

𝑒𝑒25 −
1
2

𝑒𝑒4. 

 

Investigation 4: Evaluate each of the following definite integrals exactly through an 
appropriate u-substitution. 

4a)  �
𝑥𝑥

1 + 4𝑥𝑥2

2

1
𝑑𝑑𝑑𝑑 

b)  � 𝑒𝑒−𝑥𝑥(2𝑒𝑒−𝑥𝑥 + 3)9
1

0
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c)  �  
cos (1

𝑥𝑥)
𝑥𝑥2

4
𝜋𝜋

2
𝜋𝜋

𝑑𝑑𝑑𝑑 

 

 

V. Exercises 

1. This problem centers on finding antiderivatives for the basic trigonometric 
functions other than sin(x) and cos(x). 

a) Consider the indefinite integral ∫ tan(𝑥𝑥) 𝑑𝑑𝑑𝑑. By rewriting the integrand as tan(x) 
= sin (𝑥𝑥)

cos (𝑥𝑥)
 and identifying an appropriate function-derivative pair, make a u-

substitution and hence evaluate ∫ tan(𝑥𝑥) 𝑑𝑑𝑑𝑑. 

 

b) In a similar way, evaluate ∫ cot(𝑥𝑥) 𝑑𝑑𝑑𝑑. 

 

c) Consider the indefinite integral 

�
sec2(𝑥𝑥) + sec(𝑥𝑥) tan (𝑥𝑥)

sec(𝑥𝑥) + tan (𝑥𝑥)
 

Evaluate this integral using the substitution u = sec(x) + tan(x). 

 

d) Simplify the integrand in (c) by factoring the numerator. What is a far simpler 
way to write the integrand? 

 

e) Combine your work in (c) and (d) to determine ∫ sec(𝑥𝑥) 𝑑𝑑𝑑𝑑. 

 

f) Using (c)-(e) as a guide, evaluate ∫ csc(𝑥𝑥) 𝑑𝑑𝑑𝑑. 
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2. Consider the indefinite integral ∫ 𝑥𝑥√𝑥𝑥 − 1 𝑑𝑑𝑑𝑑. 

a) At first glance, this integrand may not seem suited to substitution due to the 
presence of x in separate locations in the integrand.  Nonetheless, using the 
composite function √𝑥𝑥 − 1 as a guide, let u = x? 1. Determine expressions for both x 
and dx in terms of u. 

 

b) Convert the given integral in x to a new integral in u. 

 

c) Evaluate the integral in (b) by noting that √𝑢𝑢 = 𝑢𝑢
1
2 and observing that it is now 

possible to rewrite the integrand in u by expanding through multiplication. 

 

d) Evaluate each of the integrals ∫ 𝑥𝑥2√𝑥𝑥 − 1 𝑑𝑑𝑑𝑑? 1 dx and ∫ 𝑥𝑥√𝑥𝑥2 − 1 𝑑𝑑𝑑𝑑. Write a 
paragraph to discuss the similarities among the three indefinite integrals in this 
problem and the role of substitution and algebraic rearrangement in each. 

 

3. Consider the indefinite integral ∫ sin2 (𝑥𝑥)𝑑𝑑𝑑𝑑 

a) Explain why the substitution u = sin(x)will not work to help evaluate the given 
integral. 

 

b) Recall the Fundamental Trigonometric Identity, which states that  
sin2(x) + cos2(x) = 1. By observing that sin3 x = sin(x)sin2(x), use the Fundamental 
Trigonometric Identity to rewrite the integrand as the product of sin (x) with 
another function. 

 

c) Explain why the substitution u = cos x now provides a possible way to evaluate 
the integral in (b). 

 

d) Use your work in (a)-(c) to evaluate the indefinite integral ∫ sin3 (𝑥𝑥)𝑑𝑑𝑑𝑑. 
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(e) Use a similar approach to evaluate ∫ cos3 (𝑥𝑥)𝑑𝑑𝑑𝑑. 

 

 

4. For the town of Mathland, MI, residential power consumption has shown certain 
trends over recent years. Based on data reflecting average usage, engineers at the 
power company have modeled the town’s rate of energy consumption by the 
function 

r(t) = 4 + sin(0.263t + 4.7) + cos(0.526t + 9.4). 

Here, t measures time in hours after midnight on a typical weekday, and r is the rate 
of consumption in megawatts at time t. Units are critical throughout this problem. 

 

a) Sketch a carefully labeled graph of r(t) on the interval [0,24] and explain its 
meaning. Why is this a reasonable model of power consumption? 

 

b) Without calculating its value, explain the meaning of ∫ 𝑟𝑟(𝑡𝑡)𝑑𝑑𝑑𝑑24
0 . Include 

appropriate units on your answer. 

 

c) Determine the exact amount of power Mathland consumes in a typical day. 

 

d) What is Mathland’s average rate of energy consumption in a given 24-hour 
period? What are the units on this quantity? 

 

VI. Assessment – Khan Academy 
 

1. Complete 3 out of 4 (the first two and the last) practice exercises in the Integration 
Techniques unit (Continuity) of Khan Academy’s AP Calculus AB course: 
https://www.khanacademy.org/math/ap-calculus-ab/integration-techniques-
ab?t=practice  
 

2. Optional Practice 3 (Challenge) 

https://www.khanacademy.org/math/ap-calculus-ab/integration-techniques-ab?t=practice
https://www.khanacademy.org/math/ap-calculus-ab/integration-techniques-ab?t=practice
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5.4 Integration by Parts 

 

 

Introduction 

 

In Section 5.3, we learned the technique of u-substitution for evaluating indefinite 
integrals that involve certain composite functions. For example, the indefinite 
integral x3 sin x4 dx is perfectly suited to u-substitution, since not only is there a 
composite function present, but also the inner function’s derivative (up to a 
constant) is multiplying the composite function. Through u-substitution, we learned 
a general situation where 

recognizing the algebraic structure of a function can enable us to find its 
antiderivative. 

   It is natural to ask similar questions to those we considered in Section 5.3 about 
functions with a different elementary algebraic structure: those that are the product 
of basic functions. For instance, suppose we are interested in evaluating the 
indefinite integral 

r x sin(x) dx. 

Here, there is not a composite function present, but rather a product of the basic 
functions f x = x and g x = sin x . From our work in Section 2.3 with the Product Rule, 
we know that it is relatively complicated to compute the derivative of the product of 
two functions, so we should expect that antidifferentiating a product should be 
similarly involved. In addition, intuitively we expect that evaluating x sin x dx will 
involve somehow reversing the Product Rule. 

    To that end, in Preview Activity 5.4 we refresh our understanding of the Product 
Rule and then investigate some indefinite integrals that involve products of basic 
functions. 

 

Preview Activity 5.4. In Section 2.3, we developed the Product Rule and studied how 
it is employed to differentiate a product of two functions. In particular, recall that if f 
and g 
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are differentiable functions of x, then 

 

dx [ f (x) · g(x)] = f (x) · g,(x) + g(x) · f ,(x). 

 

(a) For each of the following functions, use the Product Rule to find the function’s 
derivative. Be sure to label each derivative by name (e.g., the derivative of g(x) 
should be labeled g,(x)). 

i. g(x) = x sin(x) 

ii. h(x) = xex 

iii. p(x) = x ln(x) 

iv. q(x) = x2 cos(x) 

v. r(x) = ex sin(x) 

(b) Use your work in (a) to help you evaluate the following indefinite integrals. Use 
differentiation to check your work. 

i. r xex + ex dx 

ii. r ex (sin(x) + cos(x)) dx 

iii. r 2x cos(x) ? x2 sin(x) dx 

iv. r x cos(x) + sin(x) dx 

v. r 1 + ln(x) dx 

(c) Observe that the examples in (b) work nicely because of the derivatives you 
were asked to calculate in (a). Each integrand in (b) is precisely the result of 
differentiating one of the products of basic functions found in (a). To see what 
happens when an integrand is still a product but not necessarily the result of 
differentiating an elementary product, we consider how to evaluate 

r x cos(x) dx. 



3.3c Fundamental Theorem of Calculus, Part 2 Page 14 
 

 

 

 

i. First, observe that 

 

 

d 

dx [x sin(x)] = x cos(x) + sin(x). 

 

Integrating both sides indefinitely and using the fact that the integral of a sum is the 
sum of the integrals, we find that 

r i d [x sin(x)]\ dx = r x cos(x) dx + r sin(x) dx. 

In this last equation, evaluate the indefinite integral on the left side as well as the 
rightmost indefinite integral on the right. 

 

ii. In the most recent equation from (i.), solve the equation for the expression 

x cos(x) dx. 

iii. For which product of basic functions have you now found the antiderivative? 

 

t><I 

 

 

Reversing the Product Rule: Integration by Parts 

 

Problem (c) in Preview Activity 5.4 provides a clue for how we develop the general 
technique known as Integration by Parts, which comes from reversing the Product 
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Rule. Recall that the Product Rule states that 

 d  [ f (x)g(x)] = f (x)g,(x) + g(x) f ,(x). 

Integrating both sides of this equation indefinitely with respect to x, it follows that 

r  d  [ f (x)g(x)] dx = r  f (x)g,(x) dx + r  g(x) f ,(x) dx. (5.6) 

On the left in Equation (5.6), we recognize that we have the indefinite integral of the 
derivative of a function which, up to an additional constant, is the original function 
itself. 

Temporarily omitting the constant that may arise, we equivalently have 

f (x)g(x) = r  f (x)g,(x) dx + r g(x) f ,(x) dx. (5.7) 

The most important thing to observe about Equation (5.7) is that it provides us with 
a choice of two integrals to evaluate. That is, in a situation where we can identify two 
functions f and g, if we can integrate f (x)g,(x), then we know the indefinite integral 
of g(x) f ,(x), and vice versa. To that end, we choose the first indefinite integral on 
the left in 

 

 

Equation (5.7) and solve for it to generate the rule 

                 r  f (x)g,(x) dx = f (x)g(x) ? r g(x) f ,(x) dx. (5.8) Often we express Equation 
(5.8) in terms of the variables u and v, where u = f x and 

v = g x . Note that in differential notation, du = f , x dx and dv = g, x  dx, and thus we 
can state the rule for Integration by Parts in its most common form as follows. 

 

   To apply Integration by Parts, we look for a product of basic functions that we can 
identify as u and d . If we can antidifferentiate d to find , and evaluating  du is not 
more difficult than evaluating u dv, then this substitution usually proves to be 
fruitful. To  demonstrate, we consider the following example. 
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Example 5.3. Evaluate the indefinite integral 

r x cos(x) dx 

 

using Integration by Parts. 

 

Solution. Whenever we are trying to integrate a product of basic functions through 
Integration by Parts, we are presented with a choice for u and dv. In the current 
problem, we can either let u = x  and dv = cos  x  dx, or let u = cos  x   and dv = x dx. 
While there is not a universal rule for how to choose u and dv, a good guideline is 
this: do so in a way that  v du is at least as simple as the original problem  u dv. 

   In this setting, this leads us to choose6 u = x and dv = cos x dx, from which it 
follows that du = 1 dx and v = sin x . With this substitution, the rule for Integration 
by Parts tells us that 

r x cos(x) dx = x sin(x) ? r sin(x) · 1 dx. 

 

6Observe that if we considered the alternate choice, and let u = cos(x) and dv = x 
dx, then du = 

? sin(x) dx and v = 1 x2, from which we would write 

r x cos(x) dx = 1 x2 cos(x) ? r 1 x2(? sin(x)) dx. 

 

Thus we have replaced the problem of integrating x cos x with that of integrating 1 
x2 sin x ; the latter is clearly more complicated, which shows that this alternate 
choice is not as helpful as the first choice. 
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At this point, all that remains to do is evaluate the (simpler) integral sin  x 1 dx. 
Doing so, we find 

r x cos(x) dx = x sin(x) ? (? cos(x)) + C = x sin(x) + cos(x) + C. 

 

 

 

There are at least two additional important observations to make from Example 5.3. 
First, the general technique of Integration by Parts involves trading the problem of 
integrating the product of two functions for the problem of integrating the product 
of two related functions. In particular, we convert the problem of evaluating u d 
for that of evaluating du. This perspective clearly shapes our choice of u and . In 
Example 5.3, the original integral to evaluate was x x dx, and through the 
substitution provided by Integration by Parts, we were instead able to evaluate
 sin x 1 dx. Note that the original function x was replaced by its derivative, 
while cos x was replaced by its antiderivative. Second, observe that when we get to 
the final stage of evaluating the last remaining antiderivative, 

it is at this step that we include the integration constant, +C. 

Activity 5.10. 

Evaluate each of the following indefinite integrals. Check each antiderivative that 
you find by differentiating. 

(a) (  te?t dt 

(b) ( 4x sin(3x) dx 

(c) (  z sec2(z) dz 

(d) (  x ln(x) dx 

 

<1 

 

Some Subtleties with Integration by Parts 
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There are situations where Integration by Parts is not an obvious choice, but the 
technique is appropriate nonetheless. One guide to understanding why is the 
observation that integration by parts allows us to replace one function in a product 
with its derivative while replacing the other with its antiderivative. For instance, 
consider the problem of evaluating r arctan(x) dx. 

Initially, this problem seems ill-suited to Integration by Parts, since there does not 
appear to be a product of functions present. But if we note that arctan(x) = 
arctan(x) · 1, and realize that we know the derivative of arctan(x) as well as the 
antiderivative of 1, we 

 

 

see the possibility for the substitution u = arctan x and dv = 1 dx. We explore this 
substitution further in Activity 5.11. 

   In a related problem, if we consider t3 sin t2 dt, two key observations can be made 
about the algebraic structure of the integrand: there is a composite function present 
in sin t2 , and there is not an obvious function-derivative pair, as we have t3 present 
(rather than simply t) multiplying sin t2 . This problem exemplifies the situation 
where we sometimes use both u-substitution and Integration by Parts in a single 
problem. If we write t3 = t · t2 and consider the indefinite integral 

r t · t2 · sin(t2) dt, 

we can use a mix of the two techniques we have recently learned. First, let z = t2 so 
that dz = 2t dt, and thus t dt = 1 dz. (We are using the variable z to perform a “z- 
substitution” since u will be used subsequently in executing Integration by Parts.) 
Under this z-substitution, we now have 

r t · t2 · sin(t2) dt = r z · sin(z) · 1 dz. 

The remaining integral is a standard one that can be evaluated by parts. This, too, is 
explored further in Activity 5.11. 

    The problems briefly introduced here exemplify that we sometimes must think 
creatively in choosing the variables for substitution in Integration by Parts, as well 
as that it is entirely possible that we will need to use the technique of substitution 
for an additional change of variables within the process of integrating by parts. 
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Activity 5.11. 

Evaluate each of the following indefinite integrals, using the provided hints. 

 

(a) Evaluate arctan(x) dx by using Integration by Parts with the substitution 

u = arctan(x) and dv = 1 dx. 

(b) Evaluate ln(z) dz. Consider a similar substitution to the one in (a). 

(c) Use the substitution z = t2 to transform the integral t3 sin  t2  dt  to a new 
integral in the variable z, and evaluate that new integral by parts. 

(d) Evaluate ( s5es3 ds using an approach similar to that described in (c). 

(e) Evaluate ( e2t cos(et ) dt. You will find it helpful to note that e2t = et · et . 

 

 

Using Integration by Parts Multiple Times 

 

We have seen that the technique of Integration by Parts is well suited to integrating 
the product of basic functions, and that it allows us to essentially trade a given 
integrand for a new one where one function in the product is replaced by its 
derivative, while the other is replaced by its antiderivative. The main goal in this 
trade of u dv for  v du is to have the new integral not be more challenging to evaluate 
than the original one. At times, it turns out that it can be necessary to apply 
Integration by Parts more than once in order to ultimately evaluate a given 
indefinite integral. 

For example, if we consider t2et dt and let u = t2 and dv = et dt, then it follows 
that 

du = 2t dt and v = et , thus 

r  t2et dt = t2et ? r 2tet dt. 

The integral on the righthand side is simpler to evaluate than the one on the left, but 
it still requires Integration by Parts. Now letting u = 2t and dv = et dt, we have du = 
2 dt and v = et , so that 
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r  t2et dt = t2et ? i2tet ? r  2et dt\ . 

Note the key role of the parentheses, as it is essential to distribute the minus sign to 
the entire value of the integral 2tet dt. The final integral on the right in the most 
recent equation is a basic one; evaluating that integral and distributing the minus 
sign, we find r t2et dt = t2et ? 2tet  + 2et  + C. 

    Of course, situations are possible where even more than two applications of 
Integration by Parts may be necessary. For instance, in the preceding example, it is 
apparent that if the integrand was t3et instead, we would have to use Integration by 
Parts three times. 

Next, we consider the slightly different scenario presented by the definite integral 

  et cos(t) dt. Here, we can choose to let u be either et or cos(t); we pick u = cos(t), 
and thus dv = et dt. With du = ? sin(t) dt and v = et , Integration by Parts tells us 
that 

r et cos(t) dt = et cos(t) ? r et (? sin(t)) dt, 

 

or equivalently that 

r  et cos(t) dt  = et cos(t) + r et sin(t) dt (5.9) 

 

 

Observe that the integral on the right in Equation (5.9), et sin t  dt, while not 
being more complicated than the original integral we want to evaluate, it is 
essentially identical 

 

 

 

 

to et cos t dt. While the overall situation isn’t necessarily better than what we 
started with, the problem hasn’t gotten worse. Thus, we proceed by integrating by 
parts again. This time we let u = sin(t) and dv = et dt, so that du = cos(t) dt and v = 
et , which implies 
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r  et cos(t) dt  = et cos(t) + iet sin(t) ? r  et cos(t) dt\ (5.10) 

We seem to be back where we started, as two applications of Integration by Parts 
has led us back to the original problem,  et cos t dt. But if we look closely at Equation 
(5.10), we see that we can use algebra to solve for the value of the desired integral. 
In particular, adding  et cos(t) dt to both sides of the equation, we have 

2 r et cos(t) dt = et cos(t) + et sin(t), 

 

 

and therefore 

 

r et cos(t) dt = 1 (et cos(t) + et sin(t)) + C. 

 

 

Note that since we never actually encountered an integral we could evaluate 
directly, we didn’t have the opportunity to add the integration constant C until the 
final step, at which point we include it as part of the most general antiderivative that 
we sought from the outset in evaluating an indefinite integral. 

Activity 5.12. 

Evaluate each of the following indefinite integrals. 

 

(a) r x2 sin(x) dx 

(b) r t3 ln(t) dt 

(c) r ez sin(z) dz 

(d) r s2e3s ds 

(e) t arctan(t) dt 

(Hint: At a certain point in this problem, it is very helpful to note that 

2 
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1+t2 

 

 

Evaluating Definite Integrals Using Integration by Parts 

 

Just as we saw with u-substitution in Section 5.3, we can use the technique of 
Integration by Parts to evaluate a definite integral. Say, for example, we wish to find 
the exact value of 

r ?/2 

  

  

One option is to evaluate the related indefinite integral to find that t sin t dt = t cos t 
+ sin t + C, and then use the resulting antiderivative along with the Fundamental 
Theorem of Calculus to find that 

 

r ?/2         

 

 

 

11?/2 

 

t sin(t) dt =  (?t cos(t) + sin(t)) 

= {? ? cos( ? ) + sin( ? )( ? (?0 cos(0) + sin(0)) 

2 2 2 

=  1. 
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   Alternatively, we can apply Integration by Parts and work with definite integrals 
throughout. In this perspective, it is essential to remember to evaluate the product 
uv over the given limits of integration. To that end, using the substitution u = t and 
dv = sin(t) dt, so that du = dt and v = ? cos(t), we write 

 

?/2 

 

0 

 

t (t) dt ?t (t)111?/2 ? 

 

?/2 

 

0 

 

(? cos(t)) dt 

 

    11?/2    11?/2 

= {? ? cos( ? ) + sin( ? )( ? (?0 cos(0) + sin(0)) 

2 2 2 

=  1. 

 

As with any substitution technique, it is important to remember the overall goal of 
the problem, to use notation carefully and completely, and to think about our end 
result to ensure that it makes sense in the context of the question being answered. 
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When u-substitution and Integration by Parts Fail to Help 

 

As we close this section, it is important to note that both integration techniques we 
have discussed apply in relatively limited circumstances. In particular, it is not hard 
to find examples of functions for which neither technique produces an 
antiderivative; indeed, there are many, many functions that appear elementary but 
that do not have an elementary 

 

 

 

 

algebraic antiderivative. For instance, if we consider the indefinite integrals 

r  ex2 dx  and  r  x tan(x) dx, 

neither u-substitution nor Integration by Parts proves fruitful. While there are other 
integration techniques, some of which we will consider briefly, none of them enables 
us to find an algebraic antiderivative for ex2 or x tan x . There are at least two key 
observations to make: one, we do know from the Fundamental Theorem Part 2 of 
Calculus that we can construct an integral antiderivative for each function; and two, 
antidifferentiation is much, much harder in general than differentiation. In 
particular, we observe that F(x) =  x et2 dt is an antiderivative of f (x) = ex2 , and 
G(x) =  x t tan(t) dt 

is an antiderivative of g x = x tan x . But finding an elementary algebraic formula that 
doesn’t involve integrals for either F or G turns out not only to be impossible 
through u-substitution or Integration by Parts, but indeed impossible altogether. 

Summary 

In this section, we encountered the following important ideas: 

 

 

• Through the method of Integration by Parts, we can evaluate indefinite integrals 
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that involve products of basic functions such as x sin x dx and x ln x dx through a 
substitution that enables us to effectively trade one of the functions in the product 
for its derivative, and the other for its antiderivative, in an effort to find a different 
product of functions that is easier to integrate. 

• If we are given an integral whose algebraic structure we can identify as a product 
of basic functions in the form f (x)g,(x) dx, we can use the substitution u = f (x) and 
dv = g,(x) dx and apply the rule 

r u dv = uv ? r v  du 

in an effort to evaluate the original integral ( f (x)g,(x) dx by instead evaluating 

• When deciding to integrate by parts, we normally have a product of functions 
present in the integrand and we have to select both u and dv. That selection is 
guided by the overall principal that we desire the new integral du to not be any more 
difficult or complicated than the original integral  u dv. In addition, it is often helpful 
to recognize if one of the functions present is much easier to differentiate than 
antidifferentiate (such as ln x ), in which case that function often is best assigned the 
variable u. For sure, when choosing dv, the corresponding function must be one that 
we can antidifferentiate. 

 

 

 

 

Exercises 

1. Let f (t) = te?2t and F(x) = ( x f (t) dt. 

(a) Determine F ,(x). 

(b) Use the FTC 1 to find a formula for F that does not involve an integral. 

(c) Is F an increasing or decreasing function for x > 0? Why? 

2. Consider the indefinite integral given by e2x cos(ex ) dx. 

(a) Noting that e2x  = ex ex , use the substitution z = ex to determine a new, 
equivalent integral in the variable z. 

(b) Evaluate the integral you found in (a) using an appropriate technique. 



3.3c Fundamental Theorem of Calculus, Part 2 Page 26 
 

(c) How is the problem of evaluating e2x cos e2x dx different from evaluating the 
integral in (a)? Do so. 

(d) Evaluate each of the following integrals as well, keeping in mind the 
approach(es) used earlier in this problem: 

• ( e2x sin(ex ) dx 

• xex2 cos(ex2 ) sin(ex2 ) dx 

3. For each of the following indefinite integrals, determine whether you would use u- 
substitution, integration by parts, neither*, or both to evaluate the integral. In each 
case, write one sentence to explain your reasoning, and include a statement of any 
substitutions used. (That is, if you decide in a problem to let u = e3x , you should 
state that, as well as that du = 3e3x dx.) Finally, use your chosen approach to 
evaluate each integral. (* one of the following problems does not have an elementary 
antiderivative and you are not expected to actually evaluate this integral; this will 
correspond with a choice of “neither” among those given.) 

(a) (  x2 cos(x3) dx 

(b) (  x5 cos(x3) dx (Hint: x5 = x2 · x3) 

(c) (  x ln(x2) dx 

(d) (  sin(x4) dx 

(e) (  x3 sin(x4) dx 

(f) (  x7 sin(x4) dx 

 

 

 

 

5.5 Other Options for Finding Algebraic Antiderivatives 

 

Introduction 

In the preceding sections, we have learned two very specific antidifferentiation 
techniques: u-substitution and integration by parts. The former is used to reverse 
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the chain rule, while the latter to reverse the product rule. But we have seen that 
each only works in very specialized circumstances. For example, while xex2 dx may 
be evaluated by 

u-s ubstitution and xex dx by integration by parts, neither method provides a route 
to evaluate ex2 dx. That fact is not a particular shortcoming of these two 
antidifferentiation techniques, as it turns out there does not exist an elementary 
algebraic antiderivative for 

ex2 . Said differently, no matter what antidifferentiation methods we could develop 
and 

learn to execute, none of them will be able to provide us with a simple formula that 
does not involve integrals for a function F(x) that satisfies F ,(x) = ex . 

   In this section of the text, our main goals are to better understand some classes of 
functions that can always be antidifferentiated, as well as to learn some options for 
so doing. At the same time, we want to recognize that there are many functions for 
which an algebraic formula for an antiderivative does not exist, and also appreciate 
the role that computing technology can play in helping us find antiderivatives of 
other complicated functions. Throughout, it is helpful to remember what we have 
learned so far: how to reverse the chain rule through u-substitution, how to reverse 
the product rule through integration by parts, and that overall, there are subtle and 
challenging issues to address when trying to find antiderivatives. 

Preview Activity 5.5. For each of the indefinite integrals below, the main question is 
to decide whether the integral can be evaluated using u-substitution, integration by 
parts, a combination of the two, or neither. For integrals for which your answer is 
affirmative, state the substitution(s) you would use. It is not necessary to actually 
evaluate any of the integrals completely, unless the integral can be evaluated 
immediately using a familiar 

 

 

basic  antiderivative. 

(a) r x2 sin(x3) dx, r x2 sin(x) dx, r sin(x3) dx, r x5 sin(x3) dx 
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    1  

(b) 1 + x2 dx, 

 

 

    x  

1 + x2 dx, 

 

 

2x + 3 

1 + x2 dx, 

 

 

ex 

, 

1 + (ex )2 

 

(c) r x ln(x) dx, r ln(x) dx, r ln(1 + x2) dx, r  x ln(1 + x2) dx, 

(d) r  x?1 ? x2 dx,  r ?  1 dx,  r ?  x dx,  r ? 1 dx, 

 

1 ? x2 

 

1 ? x2 

 

x   1 ? x2 
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t><I 

 

 

The Method of Partial Fractions 

 

The method of partial fractions is used to integrate rational functions, and 
essentially involves reversing the process of finding a common denominator. For 
example, suppoes we have the function R x =  5x   and want to evaluate 

x2?x?2 

  5x dx. x2 ? x ? 2 

Thinking algebraically, if we factor the denominator, we can see how R might come 
from the sum of two fractions of the form A + B . In particular, suppose that 

 

x?2 

5x 

 

x+1 

A B 

= + . 

  

 

(x ? 2)(x + 1) 

 

x ? 2 x + 1 
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Multiplying both sides of this last equation by (x ? 2)(x + 1), we find that 

5x = A(x + 1) + B(x ? 2). 

Since we want this equation to hold for every value of x, we can use insightful 
choices of specific x-values to help us find A and B. Taking x = ?1, we have 

5(?1) = A(0) + B(?3), 

and thus B = 5 . Choosing x = 2, it follows 

 

5(2) = A(3) + B(0), 

so A = 10 . Therefore, we now know that 

r  5x dx = r 10/3 +  5/3 dx. 

 

x2 ? x ? 2 

 

x ? 2 

 

x + 1 

 

 

 

 

 

This equivalent integral expression is straightforward to evaluate, and hence we find 
that 

r  5x dx = 10 ln |x ? 2| + 5 ln |x + 1| + C. 

x2 ? x ? 2 3 3 
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It turns out that for any rational function R(x) = where the degree of the 
polynomial 

 

P is less than7 

 

Q(x) 

the degree of the polynomial Q, the method of partial fractions can be 

 

used to rewrite the rational function as a sum of simpler rational functions of one of 
the following forms: 

 

A 

, 

x ? c 

 

A 

, or 

(x ? c)n 

 

Ax + B 

 

 

x2 + k 

 

where A, B, and c are real numbers, and k is a positive real number. Because each of 
these basic forms is one we can antidifferentiate, partial fractions enables us to 
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antidifferentiate any rational function. 

A computer algebra system such as Maple, Mathematica, or WolframAlpha can be 
used to find the partial fraction decomposition of any rational function. In 
WolframAlpha, entering 

 

partial  fraction 5x/(xˆ2-x-2) 

 

 

results in the output 

 

5x 10 5 

 

= + . 

x2 ? x ? 2 3(x ? 2) 3(x + 1) 

We will primarily use technology to generate partial fraction decompositions of 
rational functions, and then work from there to evaluate the integrals of interest 
using established methods. 

Activity 5.13. 

For each of the following problems, evaluate the integral by using the partial fraction 
decomposition provided. 

(a) r  1 dx, given that  1 =  1/4  ? 1/4 

 

x2 ? 2x ? 3 

 

x2?2x?3 

 

x?3 
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x+1 

 

(b) r x2 + 1 

 

dx, given that x2+1 

 

? 1 ? 1 2  

 

x3 ? x2 

 

x3?x2 = x 

 

x2  + x?1 

 

(c) r   x ? 2   dx, given that  x?2   = 1 ? 2  + ?x+2 

 

<1 

 

    7If the degree of P is greater than or equal to the degree of Q, long division may be 
used to write R as the sum of a polynomial plus a rational function where the 
numerator’s degree is less than the denominator’s. 

 

 

Using an Integral Table 
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Calculus has a long history, with key ideas going back as far as Greek 
mathematicians in 400-300 BC. Its main foundations were first investigated and 
understood independently by Isaac Newton and Gottfried Wilhelm Leibniz in the 
late 1600s, making the modern ideas of calculus well over 300 years old. It is 
instructive to realize that until the late 1980s, the personal computer essentially did 
not exist, so calculus (and other mathematics) had to be done by hand for roughly 
300 years. During the last 30 years, however, computers have revolutionized many 
aspects of the world we live in, including mathematics. In this section we take a 
short historical tour to precede the following discussion of the role computer 
algebra systems can play in evaluating indefinite integrals. In particular, we consider 
a class of integrals involving certain radical expressions that, until the advent of 
computer algebra systems, were often evaluated using an integral table. 

As seen in the short t?able of integral?s found in Appendix A, there are also many 
forms 

of integrals that involve a2 ± w2 and w2 ? a2. These integral rules can be 
developed 

using a technique known as trigonometric substitution that we choose to omit; 
instead, we 

will simply accept the results presented in the table. To see how these rules are 
needed and used, consider the differences among 

 

r ? 1 dx, r  ? x 

 

dx, and r ?1 ? x2 dx. 

 

1 ? x2 1 ? x2 

The first integral is a familiar basic one, and results in arcsin x + C. The second 
integral can be evaluated using a standard u-substitution with u = 1   x2. The third, 
however, is not familiar and does not lend itself to u-substitution. 

In Appendix A, we find the rule 
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(8) a2 ? u2 du = 

 

u ?   

2 

 

a2 u 

arcsin 

2 a 

 

 

+ C. 

 

Using the substitutions a = 1 and u = x (so that du = dx), it follows that 

r ?1 ? x2 dx = x ?1 ? x2 ? 1 arcsin x + C. 

    One important point to note is that whenever we are applying a rule in the table, 
we are doing a u-substitution. This is especially key when the situation is more 
complicated than allowing u = x as in the last example. For instance, say we wish to 
evaluate the integral 

r ?9 + 64x2 dx. 

Once again, we want to use Rule (3) from the table, but now do so with a = 3 and u = 
8x; we also choose the “+” option in the rule. With this substitution, it follows that 
du = 8dx, 

 

 

so dx = 1 . Applying this substitution, 
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r ?9 + 64x2 dx = r ?9 + u2 · 1 du = 1 r ?9 + u2 du. 

8 8 

By Rule (3), we now find that 

r ?9 + 64x2 dx = 1 { u ?u2 + 9 + 9 ln |u + ?u2 + 9| + C( 

 

= 64x2 + 9 + ln |8x + ?64x2 + 9| + C( . 

 

In problems such as this one, it is essential that we not forget to account for the 
factor of 

1 that must be present in the evaluation. 

Activity 5.14. 

For each of the following integrals, evaluate the integral using u-substitution and/or 
an entry from the table found in Appendix A. 

(a) r ?x2 + 4 dx 

 

(b) r 

(c) r 

 

 

x 

?x2 + 4 dx 

2 

? dx 

 

(d) r ? 1 dx 
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x2  49 ? 36x2 

<1 

 

Using Computer Algebra Systems 

 

A computer algebra system (CAS) is a computer program that is capable of executing 
symbolic mathematics. For a simple example, if we ask a CAS to solve the equation 
ax2 + bx + c = 0 for the variable x, where a, b, and c are arbitrary constants, the 
program 

will return x = ?b±?b2?4ac . While research to develop the first CAS dates to the 
1960s, 

these programs became more common and publicly available in the early 1990s. 
Two prominent early examples are the programs Maple and Mathematica, which 
were among the first computer algebra systems to offer a graphical user interface. 
Today, Maple and Mathematica are exceptionally powerful professional software 
packages that are capable of executing an amazing array of sophisticated 
mathematical computations. They are also very expensive, as each is a proprietary 
program. The CAS SAGE is an open-source, free alternative to Maple and 
Mathematica. 

 

 

    For the purposes of this text, when we need to use a CAS, we are going to turn 
instead to a similar, but somewhat different computational tool, the web-based 
“computational knowledge engine” called WolframAlpha. There are two features of 
WolframAlpha that make it stand out from the CAS options mentioned above: (1) 
unlike Maple and Math- ematica, WolframAlpha is free (provided we are willing to 
suffer through some pop-up advertising); and (2) unlike any of the three, the syntax 
in WolframAlpha is flexible. Think of WolframAlpha as being a little bit like doing a 
Google search: the program will interpret what is input, and then provide a 
summary of options. 

    If we want to have WolframAlpha evaluate an integral for us, we can provide it 
syntax such as 
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integrate   xˆ2  dx 

 

 

to which the program responds with 

r x2 dx = 

 

 

x3 constant 

3 

 

While there is much to be enthusiastic about regarding CAS programs such as 
Wolfra- mAlpha, there are several things we should be cautious about: (1) a CAS 
only responds to exactly what is input; (2) a CAS can answer using powerful 
functions from highly advanced mathematics; and (3) there are problems that even 
a CAS cannot do without additional human insight. 

   Although (1) likely goes without saying, we have to be careful with our input: if we 
enter syntax that defines a function other than the problem of interest, the CAS will 
work with precisely the function we define. For example, if we are interested in 
evaluating the integral 

 

 

 

and we mistakenly enter 

 

integrate 1/16 - 5xˆ2  dx 
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a CAS will (correctly) reply with 

 

  1 dx, 

16 ? 5x2 

 

 

 

 1 x ? 5 x3. 

 

It is essential that we are sufficiently well-versed in antidifferentiation to recognize 
that this 

function cannot be the one that we seek: integrating a rational function such as
 1   2 , 

 

 

we expect the logarithm function to be present in the result. 

Regarding (2), even for a relatively simple integral such as ( 1 

 

16?5x 

 

2 dx, some CASs 

 

will invoke advanced functions rather than simple ones. For execute the command 

 

16?5x we use Maple to 
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int(1/(16-5*xˆ2), x); 

 

the program responds with 

r  1 dx = ?5 arctanh( ?5 x). 

  

16 ? 5x2 20 4 

While this is correct (save for the missing arbitrary constant, which Maple never 
reports), the inverse hyperbolic tangent function is not a common nor familiar one; a 
simpler way to express this function can be found by using the partial fractions 
method, and happens to be the result reported by WolframAlpha: 

r  1 dx =  1  (log(4?5 + 5?x) ? log(4?5 ? 5?x)1 + constant. 

    Using sophisticated functions from more advanced mathematics is sometimes the 
way a CAS says to the user “I don’t know how to do this problem.” For example, if we 
want to evaluate 

r e?x2 dx, 

and we ask WolframAlpha to do so, the input 

 

 

integrate  exp(-xˆ2)  dx 

 

results in the output 

r e?x2 dx = 

 

 

?   
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erf x + constant. 

2 

 

The function “erf(x)” is the error function, which is actually defined by an integral: 

 

  2 x 

erf(x) = ?? 

 

 

e?t2 

 

 

dt. 

 

So, in producing output involving an integral, the CAS has basically reported back to 
us the very question we asked. 

    Finally, as remarked at (3) above, there are times that a CAS will actually fail 
without some additional human insight. If we consider the integral 

r (1 + x)ex ?1 + x2e2x dx 

and ask WolframAlpha to evaluate 

 

    int  (1+x)  *  exp(x)  *  sqrt(1+xˆ2  *  exp(2x))  dx,  the program thinks for a 
moment and then reports 

 

 

(no result found in terms of standard mathematical functions) 
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But in fact this integral is not that difficult to evaluate. If we let u = xex , then du = 

x 

 

(1 + x)e 

 

dx, which means that the preceding integral has form 

r (1 + x)ex ?1 + x2e2x dx = r ?1 + u2 du, 

 

 

which is a straightforward one for any CAS to evaluate. 

    So, the above observations regarding computer algebra systems lead us to proceed 
with some caution: while any CAS is capable of evaluating a wide range of integrals 
(both definite and indefinite), there are times when the result can mislead us. We 
must think carefully about the meaning of the output, whether it is consistent with 
what we expect, and whether or not it makes sense to proceed. 

Summary 

In this section, we encountered the following important ideas: 

 

 

• The method of partial fractions enables any rational function to be 
antidifferentiated, because any polynomial function can be factored into a product of 
linear and irreducible quadratic terms. This allows any rational function to be 
written as the sum of a polynomial plus rational terms of the form A n (where n is a 
natural number) and 

(x?c) 

Bx+C (where k is a positive real number). 

• Until the development of computing algebra systems, integral tables enabled 
students of calculus to more easily evaluate integrals such as a2 + u2 du, where a is 
a positive real number. A short table of integrals may be found in Appendix A. 
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• Computer algebra systems can play an important role in finding antiderivatives, 
though we must be cautious to use correct input, to watch for unusual or unfamiliar 
advanced functions that the CAS may cite in its result, and to consider the possibility 
that a CAS may need further assistance or insight from us in order to answer a 
particular question. 

 

Exercises 

1. For each of the following integrals involving rational functions, (1) use a CAS to 
find the partial fraction decomposition of the integrand; (2) evaluate the integral of 
the resulting function without the assistance of technology; (3) use a CAS to evaluate 
the original integral to test and compare your result in (2). 

(a) x3 + x + 1 dx x4 ? 1 

(b) x5 + x2 + 3 dx x3 ? 6x2 + 11x ? 6 

 

 

 

 

(c) x2 ? x ? 1 dx 

(x ? 3)3 

2. For each of the following integrals involving radical functions, (1) use an 
appropriate u-substitution along with Appendix A to evaluate the integral without 
the assistance of technology, and (2) use a CAS to evaluate the original integral to 
test and compare your result in (1). 

(a) r ?  1 dx 

(b) r x?1 + x4 dx 

(c) r ex ?4 + e2x dx 

 

(d) r 
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tan(x) dx 

 

9 ? cos2(x) 

3. Consider the indefinite integral given by 

x + ?1 + x2 

x dx. 

 

(a) Explain why u-substitution does not offer a way to simplify this integral by 
discussing at least two different options you might try for u. 

(b) Explain why integration by parts does not seem to be a reasonable way to 
proceed, either, by considering one option for u and dv. 

(c) Is there any line in the integral table in Appendix A that is helpful for this 
integral? 

(d) Evaluate the given integral using WolframAlpha. What do you observe? 
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I . TI – Limits Basics – at end (opt.) 
 

II . GeoGebra apps 
1.  https://ggbm.at/K8MnDYh4  

 

IV. Practice – Khan Academy 
 
1. Complete the six online practice exercises in the first unit (Continuity) of Khan 
Academy’s AP Calculus AB course: https://www.khanacademy.org/math/ap-
calculus-ab/continuity-ab?t=practice  
 
 
 
 

https://ggbm.at/K8MnDYh4
https://www.khanacademy.org/math/ap-calculus-ab/continuity-ab?t=practice
https://www.khanacademy.org/math/ap-calculus-ab/continuity-ab?t=practice

