
3.3B A Deeper Dive: FTC Part 2 
 
 

Finding Antiderivatives and Evaluating 
Integrals 
 
_______________________________________ 
 
In Lesson 3.3A, you learned the Fundamental 
Theorem of Calculus (FTC), which from here 
forward will be referred to as the Fundamental 
Theorem of Calculus Part 11, as in this section we 
develop a corresponding result. In particular, 
recall that the FTC 1 tells us that if f is a 
continuous function on a, b and F is any 
antiderivative of f (that is, F ‘= f ), then 

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎)
𝑏𝑏

𝑎𝑎

 

You have used this result in two settings: (1) where f is a function whose graph we 
know and for which we can compute the exact area bounded by f on a certain 
interval [a, b], we can compute the change in an antiderivative F over the interval; 
and (2) where f is a function for which it is easy to determine an algebraic formula 
for an antiderivative, we may evaluate the integral exactly and hence determine the 
net-signed area bounded by the function on the interval.  

Investigation 1: First FTC Redux 

Consider the function A defined by the rule 

𝐴𝐴(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑,
𝑥𝑥

1

 

where f (t) = 4 - 2t. 

1a) Compute A(1) and A(2) exactly. 

                                                           
1 On the AP exam, there is no need to distinguish between FTC, Part 1 and FTC Part 2. There is only one Theorem, 
with different applications.  
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b) Use the Fundamental Theorem Part 1 of Calculus to find an equivalent formula for 
A(x) that does not involve integrals. That is, use FTC 1 to evaluate ∫ (4 − 2𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥

1 . 

 

c) Observe that f is a linear function; what kind of function is A? 

 

d) Using the formula you found in (b) that does not involve integrals, compute A’(x). 

 

e) While you have defined f  by the rule f (t) = 4 - 2t, it is equivalent to say that f is 
given by the rule f(x)= 4 - 2x. What do you observe about the relationship between A 
and f ? 

 

 

II. The Fundamental Theorem Part 2 of Calculus 

The result of Investigation 1 is not particular to the function f (t) = 4 - 2t, nor to the 
choice of “1” as the lower bound in the integral that defines the function A. For 
instance, if we let 𝑓𝑓(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) − 𝑡𝑡 and set 𝐴𝐴(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥

2 , then we can 
determine a formula for A without integrals by the FTC 1. Specifically, 

𝐴𝐴(𝑥𝑥) = �(cos(𝑡𝑡) − 𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑥𝑥

2

 

        = sin(𝑡𝑡) −
1
2

𝑡𝑡2|𝑥𝑥2 

                                  = sin(𝑥𝑥) −
1
2

𝑥𝑥2 − (sin(2) − 2). 

Differentiating A(x), since (sin (2) - 2) is constant, it follows that 

A’(x) = cos(x) - x, 

and thus we see that A’(x) = f (x). This tells us that for this particular choice of f , A is 
an antiderivative of f . More specifically, since 𝐴𝐴(2) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 = 02

2 , A is the only 
antiderivative of f for which A(2) = 0. 
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In general, if f is any continuous function, and we define the function A by the rule 

𝐴𝐴(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

𝑐𝑐

 

where c is an arbitrary constant, then we can show that A is an antiderivative of f . 
To see why, let’s demonstrate that A’ x = f (x) by using the limit definition of the 
derivative. Doing so, we observe that 

𝐴𝐴′(𝑥𝑥) = lim
ℎ→∞

𝐴𝐴(𝑥𝑥 + ℎ) − 𝐴𝐴(𝑥𝑥)
ℎ

 

= lim
𝑥𝑥→∞

∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 − ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
𝑐𝑐

𝑥𝑥+ℎ
𝑐𝑐

ℎ
 

= lim
𝑥𝑥→∞

∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥+ℎ
𝑐𝑐

ℎ
 

where the last equation in the preceding chain follows from the fact 

∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 +𝑥𝑥
𝑐𝑐 ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥+ℎ

𝑐𝑐
𝑥𝑥+ℎ

𝑥𝑥 . Now, observe that for small values of h, 

� 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 ≈ 𝑓𝑓(𝑥𝑥) ∙ ℎ
𝑥𝑥+ℎ

𝑥𝑥

 

by a simple left-hand approximation of the integral. Thus, as we take the limit, it 
follows that 

𝐴𝐴"(𝑥𝑥) = lim
ℎ→0

∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥+ℎ
𝑐𝑐

ℎ
= lim

ℎ→0

𝑓𝑓(𝑥𝑥) ∙ ℎ
ℎ

= 𝑓𝑓(𝑥𝑥) 

 

Hence, A is indeed an antiderivative of f . In addition, 𝐴𝐴(𝑐𝑐) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 = 0𝑐𝑐
𝑐𝑐 . The 

preceding argument demonstrates the truth of the Fundamental Theorem of 
Calculus Part 2, which we state as follows. 
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Investigation 2: FTC 2 

2.Suppose that f is the function graphed below and that f is a piecewise function 
whose parts are either portions of lines or portions of circles, as pictured. In 
addition, 

 

a) What does the FTC 2 tell us about the relationship between A and f ? 

 

b) Compute A(1) and A(3) exactly. 

 

c) Sketch a precise graph of y = A (x) on the axes at right that accurately reflects 
where A is increasing and decreasing, where A is concave up and concave down, and 
the exact values of A at x = 0, 1, . . . , 7. 

 

d) How is A similar to, but different from, the function F that you found in 
Investigation 1? 

 

e) With as little additional work as possible, sketch precise graphs of the functions 

The Fundamental Theorem of Calculus, Part 2: If f is a continuous 
function, and c is any constant , then f has a unique antiderivative 
that satisfies A(c) = 0, and that antiderivative is given by the rule 

𝐴𝐴(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

𝑐𝑐
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𝐵𝐵(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
3  and 𝐵𝐵(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥

1 . Justify your results with at least one 
sentence of explanation. 

 

 

III. Understanding (and Describing) Integral Functions 

The FTC 2 provides a means to construct an antiderivative of any continuous 
function. If given a continuous function g and wish to find an antiderivative of G, we 
can now say that 

𝐺𝐺(𝑥𝑥) = � 𝑔𝑔(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑥𝑥

𝑐𝑐

 

provides the rule for such an antiderivative, and moreover that G(c) = 0. Note 
especially that we know that G’(x) = g(x) . We sometimes want to write this 
relationship between G and g from a different notational perspective. In particular, 
observe that 

𝑑𝑑
𝑑𝑑𝑑𝑑

�� 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

𝑐𝑐

� = 𝑔𝑔(𝑥𝑥)                                     𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏 

This result can be particularly useful when we’re given an integral function such as 
G and wish to understand properties of its graph by recognizing that G’(x) = g(x), 
while not necessarily being able to exactly evaluate the definite integral ∫ 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑.𝑥𝑥

𝑐𝑐  

Example 1. Investigate the behavior of the integral function 

𝐸𝐸(𝑥𝑥) = � 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑑𝑑 .
𝑥𝑥

0

 

 E is closely related to the well-known error function2, a function that is particularly 
important in probability and statistics.  

                                                           
2 The error function is defined by the rule erf(𝑥𝑥) = 2

√𝜋𝜋 ∫ 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑑𝑑𝑥𝑥
0  and has the key 

property that  0 ≤ erf (𝑥𝑥) < 1for all  𝑥𝑥 > 0 and moreover that lim
𝑥𝑥→∞

erf(𝑥𝑥) = 1. 
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Solution : While you cannot evaluate E exactly for any value other than x = 0, you 
still can gain a tremendous amount of information about the function E. To begin, 
applying the rule in Equation 1 to E, it follows that 

𝐸𝐸′(𝑥𝑥) =
𝑑𝑑

𝑑𝑑𝑑𝑑
�� 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑑𝑑

𝑥𝑥

0

� = 𝑒𝑒−𝑥𝑥2 , 

so you know a formula for the derivative of E. Moreover, you know that E(0) = 0.  

Using the first and second derivatives of E, along with the fact that E(0) = 0, you can 
determine more information about the behavior of E. First, with 𝐸𝐸′(𝑥𝑥) = 𝑒𝑒−𝑥𝑥2 , note 
that for all real numbers x, 𝑒𝑒−𝑥𝑥2 > 0 , and thus E ‘( x) > 0 for all x. Thus E is an 
always increasing function.  

Further, note that as 𝑥𝑥 → ∞ , E’(x)= 𝑒𝑒−𝑥𝑥2 → ∞ , hence the slope of the function E 
tends to zero as x (and similarly as 𝑥𝑥 → −∞). Indeed, it turns out that E has 
horizontal asymptotes as x increases or decreases without bound. 

In addition, observe that 𝐸𝐸"(𝑥𝑥) = −2𝑥𝑥𝑒𝑒−𝑥𝑥2 , and that E” (0) = 0, while E” (x) < 0 for x 
> 0 and E” (x) > 0 for x < 0. This information tells us that E is concave up for x < 0 
and concave down for x > 0 with a point of inflection at x = 0. 

The only thing lacking is a sense of how big E can get as x increases. If you use a 
midpoint Riemann sum with 10 subintervals to estimate E(2) , we see that E (2) ≈   
0.8822; a similar calculation to estimate E (3)  shows little change (E(3) ≈  0.8862), 
so it appears that as x increases without bound, E approaches a value just larger 
than 0.886, which aligns with the fact that E has horizontal asymptotes. Putting all of 
this information together (and using the symmetry of 𝑓𝑓(𝑡𝑡) = 𝑒𝑒−𝑡𝑡2), you can see the 
results shown below. 
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Investigation 3: 

Suppose that 𝑓𝑓(𝑡𝑡) = 𝑡𝑡
1+𝑡𝑡2   and 𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥

0 .    

 

 

 

3a) On the axes at left in Figure 5.12, plot a graph of  𝑓𝑓(𝑡𝑡) = 𝑡𝑡
1+𝑡𝑡2on the interval 

−10 ≤ 𝑡𝑡 ≤ 10. Clearly label the vertical axes with appropriate scale. 

 

b) What is the key relationship between F and f , according to the FTC 2? 

 

c) Use the first derivative test to determine the intervals on which F is increasing 
and decreasing. 

 

d) Use the second derivative test to determine the intervals on which F is concave 
up and concave down. Note that f ’(t) can be simplified to be written in the form 

𝑓𝑓′(𝑡𝑡) = 1−𝑡𝑡2

(1+𝑡𝑡2)2. 



3.3c Fundamental Theorem of Calculus, Part 2 Page 8 
 

 

 e) Using technology appropriately, estimate the values of F(5) and F(10) through 
appropriate  Riemann sums. 

 

f) Sketch an accurate graph of y = F (x) on the right-hand axes provided, and clearly 
label the vertical axes with appropriate scale. 

 

 

IV. Differentiating an Integral Function 

You have seen that the FTC 2 enables you to construct an antiderivative F of any 
continuous function f by defining F by the corresponding integral function 𝐹𝐹(𝑥𝑥) =
∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑐𝑐

𝑥𝑥  . This means that integral functions, which may appear complicated, are 
nonetheless particularly simple to differentiate. For instance, if 

𝐹𝐹(𝑥𝑥) = � sin(𝑡𝑡2) 𝑑𝑑𝑡𝑡
𝑥𝑥

𝜋𝜋

 

then by the FTC 2, you know that 

F ‘(x) = sin(x2). 

Stating this result more generally for an arbitrary function f , you know by the FTC 2 
that 

𝑑𝑑
𝑑𝑑𝑑𝑑

�� 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑎𝑎

𝑥𝑥

� = 𝑓𝑓(𝑥𝑥) 

In words, the last equation essentially says that “the derivative of the integral 
function whose integrand is f ‘ is f .” In this sense, we see that if we first integrate the 
function f from t = a to t = x, and then differentiate with respect to x, these two 
processes “undo” one another. 

Taking a different approach, say we begin with a function f (t) and differentiate with 
respect to t. What happens if we follow this by integrating the result from t = a to t = 
x? 

That is, what can we say about the quantity 
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�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑓𝑓(𝑡𝑡)]
𝑥𝑥

𝑎𝑎

𝑑𝑑𝑑𝑑 ? 

Here, we use FTC 1 and note that f (t) is an antiderivative of 𝑑𝑑
𝑑𝑑𝑑𝑑

[(𝑓𝑓(𝑡𝑡)]. Applying this 
result and evaluating the antiderivative function, you see that 

 

�
𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑] = 𝑓𝑓(𝑡𝑡)⌋𝑥𝑥
𝑎𝑎

𝑥𝑥

𝑎𝑎

 

                                = f(x) – f(a) 

Thus, we see that if we apply the processes of first differentiating f and then 
integrating the result from a to x, we return to the function f ‘ minus the constant 
value f (a). So in this situation, the two processes almost undo one another, up to the 
constant f (a). 

 This demonstrate that differentiating and integrating (where we integrate from a 
constant up to a variable) are almost inverse processes. In one sense, this should not 
be surprising: integrating involves antidifferentiating, which reverses the process of 
differentiating. On the other hand, we see that there is some subtlety involved, as 
integrating the derivative of a function does not quite produce the function itself. 
This is connected to a key fact we observed earlier: that any function has an entire 
family of antiderivatives, and any two of those antiderivatives differ only by a 
constant. 

 

 

Investigation 4: 

4. Evaluate each of the following derivatives and definite integrals. Clearly state 
whether you used FTC 1 or FTC 2 in so doing. 

a)   
𝑑𝑑

𝑑𝑑𝑑𝑑
�� 𝑒𝑒𝑡𝑡2𝑑𝑑𝑑𝑑

𝑥𝑥

4

� 

b)  �
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑡𝑡4

1 + 𝑡𝑡4�
𝑥𝑥

−2

𝑑𝑑𝑑𝑑  
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c)   
𝑑𝑑

𝑑𝑑𝑑𝑑
�� cos (𝑡𝑡3)𝑑𝑑𝑑𝑑

1

𝑥𝑥

� 

d)  �
𝑑𝑑
𝑑𝑑𝑑𝑑

[ln(1 + 𝑡𝑡2)]
𝑥𝑥

3

𝑑𝑑𝑑𝑑  

e)   
𝑑𝑑

𝑑𝑑𝑑𝑑
�� sin (𝑡𝑡2)𝑑𝑑𝑑𝑑

𝑥𝑥3

4

� 

 

 

V. Practice 

1. Let g be the function pictured below left, and let F be defined by 𝐹𝐹(𝑥𝑥) = ∫ 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
2 . 

Assume that the shaded areas have values A1 = 4.29, A2 = 12.75, A3 = 0.36 and A4 = 
1.79. Assume further that the portion of A2 that lies between x = 0.5 and x = 2 is 
6.06. 

Sketch a carefully labeled graph of F on the axes provided, and include a written 
analysis of how you know where F is zero, increasing, decreasing, CCU, and CCD. 

 

 

 

 



3.3c Fundamental Theorem of Calculus, Part 2 Page 11 
 

2. The tide removes sand from the beach at a small ocean park at a rate modeled by 
the function 

𝑅𝑅(𝑡𝑡) = 2 + 5sin (
4𝜋𝜋𝜋𝜋
25

) 

A pumping station adds sand to the beach at rate modeled by the function 

𝑆𝑆(𝑡𝑡) =
15𝑡𝑡

1 + 3𝑡𝑡
 

Both R(t) and S(t) are measured in cubic yards of sand per hour, t is measured in 
hours, and the valid times are 0 ≤ 𝑡𝑡 ≤ 6. At time t = 0, the beach holds 2500 cubic 
yards of sand. 

a) What definite integral measures how much sand the tide will remove during the 
time period 0 ≤ 𝑡𝑡 ≤ 6? Why? 

 

b) Write an expression for Y(x) , the total number of cubic yards of sand on the beach 
at time x. Carefully explain your thinking and reasoning. 

 

c) At what instantaneous rate is the total number of cubic yards of sand on the beach 
at time t = 4 changing? 

 

d) Over the time interval 0 ≤ 𝑡𝑡 ≤ 6, at what time t is the amount of sand on the beach 
least? What is this minimum value? Explain and justify your answers fully. 

 

 

 

3. When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet 
per minute) decreases as altitude increases, because the air is less dense at higher 
altitudes. Given below is a table showing performance data for a certain single 
engine aircraft, giving its climb rate at various altitudes, where c(h) denotes the 
climb rate of the airplane at an altitude h. 
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h, feet 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
c 

(ft/min) 
925 875 830 780 730 685 635 585 535 490 440 

 

Let a new function m, that also depends on h, (say y = m(h) ) measure the number of 
minutes required for a plane at altitude h to climb the next foot of altitude. 

 

a. Determine a similar table of values for m(h) and explain how it is related to the 
table above. Be sure to discuss the units on m. 

 

b. Give a careful interpretation of a function whose derivative is m(h) . Describe what 
the input is and what the output is. Also, explain in plain English what the function 
tells us. 

 

c. Determine a definite integral whose value tells us exactly the number of minutes 
required for the airplane to ascend to 10,000 feet of altitude. Clearly explain why the 
value of this integral has the required meaning. 

 

d. Determine a formula for a function M(h) whose value tells us the exact number of 
minutes required for the airplane to ascend to h feet of altitude. 

 

e. Estimate the values of M(6000) and M(10,000) as accurately as you can. Include 
units on your results. 

 

VI. Practice – Khan Academy 
 
Complete the following online practice exercise in the FTC unit of Khan Academy’s AP 
Calculus AB course: 

1.   https://www.khanacademy.org/math/ap-calculus-ab/fundamental-theorem-of-calculus-
ab?t=practice   

2.  https://www.khanacademy.org/math/ap-calculus-ab/fundamental-theorem-
of-calculus-ab/fundamental-theorem-of-calculus-chain-rule-ab/e/second-
fundamental-theorem-of-calculus 

https://www.khanacademy.org/math/ap-calculus-ab/fundamental-theorem-of-calculus-ab?t=practice
https://www.khanacademy.org/math/ap-calculus-ab/fundamental-theorem-of-calculus-ab?t=practice
https://www.khanacademy.org/math/ap-calculus-ab/fundamental-theorem-of-calculus-ab/fundamental-theorem-of-calculus-chain-rule-ab/e/second-fundamental-theorem-of-calculus
https://www.khanacademy.org/math/ap-calculus-ab/fundamental-theorem-of-calculus-ab/fundamental-theorem-of-calculus-chain-rule-ab/e/second-fundamental-theorem-of-calculus
https://www.khanacademy.org/math/ap-calculus-ab/fundamental-theorem-of-calculus-ab/fundamental-theorem-of-calculus-chain-rule-ab/e/second-fundamental-theorem-of-calculus

