
3.3B A Deeper Dive 
 
 

Finding Antiderivatives and Evaluating 
Functions Defined by Integrals 
_______________________________________ 
 
Over the past few lessons, you discovered key 
connections between the net-signed area under 
the velocity function and the corresponding 
change in position of the function. In Lesson 3.3A, 
the Total Change Theorem further illuminated 
these connections between f‘ and f in a more 
general setting, such as the one found in Figure 
4.34, showing that the total change in the value of 
f over an interval a, b is determined by the exact 
net-signed area bounded by f‘ and the x-axis on 
the same interval. 

 In this lesson, you explore these issues still further, with a particular emphasis on 
situations where an accurate graph of the derivative function is available, along with 
a single value of the function f. From that information, we desire to completely 
determine an accurate graph of f that not only represents correctly where f is 
increasing, decreasing, concave up, and concave down, but also allows us to find an 
accurate function value at any point of interest to us. 

Investigation 1:  Suppose that the following information is known about a function f: 
the graph of its derivative, y = f‘ (x), is given below. Further, assume that f‘  is 
piecewise linear (as pictured) and that for 𝑥𝑥 ≤ 0 and 𝑥𝑥 ≥ 6,  f‘ (x) = 0. Finally, it is 
given that f (0) = 1. 
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1a) On what interval(s) is f an increasing function? On what intervals is f decreasing? 

 

b) On what interval(s) is f concave up? concave down? 

 

c) At what point(s) does f have a relative minimum? a relative maximum? 

 

d) Recall that the Total Change Theorem tells us that 

𝑓𝑓(1) − 𝑓𝑓(0) = � 𝑓𝑓′(𝑥𝑥) 𝑑𝑑𝑥𝑥
1

0

 

What is the exact value of f (1)? 

 

e) Use the given information and similar reasoning to that in (d) to determine the 
exact value of f (2), f (3), f (4), f (5), and f (6). 

 

f) Based on your responses to all of the preceding questions, sketch a complete and 
accurate graph of y = f (x) on the axes provided, being sure to indicate the behavior 
of f  for x < 0 and x > 6. 
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II. Constructing the graph of an antiderivative 

Investigation 1 demonstrates one consequence of the Fundamental Theorem of 
Calculus: if you know a function f and wish to know information about its 
antiderivative, F, provided that we have some starting point a for which we know 
the value of F(a) , we can determine the value of F(b) via the definite integral. In 
particular, since 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏

𝑎𝑎 , it follows that 

𝐹𝐹(𝑏𝑏) = 𝐹𝐹(𝑎𝑎) + � 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥                                   𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏
𝑏𝑏

𝑎𝑎
 

Rephrasing this in terms of a given function f and its antiderivative F, we observe 
that on an interval [a, b], 

differences in heights on the antiderivative (such as F(b) - F(a)) correspond to 
the net-signed area bounded by the original function on the interval [a, b] 

(∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 .) 

For example, say that f (x) = x2 and that we are interested in an antiderivative of f 
that satisfies F(1) = 2. Thinking of a = 1 and b = 2 in Equation 1, it follows from the 
Fundamental Theorem of Calculus that 

𝐹𝐹(2) = 𝐹𝐹(1) + � 𝑥𝑥2𝑑𝑑𝑥𝑥
2

1

 

= 2 +
1
3

𝑥𝑥3|2
1 

= 2 + (
8
3

−
1
3

) 

=
13
3

 

In this way, we see that if we are given a function f for which we can find the exact 
net-signed area bounded by f on a given interval, along with one value of a 
corresponding antiderivative F, we can find any other value of F that we seek, and in 
this way construct a completely accurate graph of F. We have two main options for 
finding the exact net-signed area: using the Fundamental Theorem of Calculus 
(which requires us to find an algebraic formula for an antiderivative of the given 
function f ), or, in the case where f has nice geometric properties, finding net-signed 



3.3b Evaluating Integrals Page 4 
 

areas through the use of known area formulas. 

 

Investigation 2 

Suppose that the function y = f (x) is given by the graph shown below, and that the 
pieces of f are either portions of lines or portions of circles. In addition, let F be an 
antiderivative of f and say that F(0) = -1. Finally, assume that for 𝑥𝑥 ≤ 0 and 𝑥𝑥 ≥ 7,  
f (x) = 0. 

 

 

2a) On what interval(s) is F an increasing function? On what intervals is F 
decreasing? 

 

b) On what interval(s) is F concave up? concave down? neither? 

 

c) At what point(s) does F have a relative minimum? a relative maximum? 

 

d) Use the given information to determine the exact value of F(x) for x =1, 2, . . . , 7. 
In addition, what are the values of F(-1) and F(8)? 

 

e) Based on your responses to all of the preceding questions, sketch a complete and 
accurate graph of y = F x on the axes provided, being sure to indicate the behavior of 
F for x < 0 and x > 7. Clearly indicate the scale on the vertical and horizontal axes of 
your graph. 
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f) What happens if we change one key piece of information: in particular, say that G 
is an antiderivative of f and G(0) = 0. How (if at all) would your answers to the 
preceding questions change? Sketch a graph of G on the same axes as the graph of F 
you constructed in (e). 

 

 

III. Multiple antiderivatives of a single  function 

In the final question (2f above), you encountered a very important idea: a given 
function f has more than one antiderivative. In addition, any antiderivative of f is 
determined uniquely by identifying the value of the desired antiderivative at a single 
point. For example, suppose that f is the function shown below-left, and we say that 
F is an antiderivative of f that satisfies F(0) = 1. 

 
At left, the graph of y = f (x). At right, three different antiderivatives of f . 

Then, using Equation 1, we can compute F(1) = 1.5, F(2) = 1.5, F(3) = 0.5,  F(4)  =  
2, F(5) = 0.5, and F(6) = 1, plus we can use the fact that F ‘ = f  to ascertain where F 
is increasing and decreasing, concave up and concave down, and has relative 
extremes and inflection points. 

If we instead chose to consider a function G that is an antiderivative of f but has the 
property that G(0) = 3, then G will have the exact same shape as F (since both share 
the derivative f ), but G will be shifted vertically from the graph of F, as pictured in 
red.  

In the same way, if we assigned a different initial value to the antiderivative, say 
H(0) = 1, we would get still another antiderivative, as shown in magenta. 

This example demonstrates that if a function has a single antiderivative, it must have 
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infinitely many: you can add any constant to the antiderivative and get another 
antiderivative. For this reason, you refer to the general antiderivative of a function f.  

For example, if f (x) = x2, its general antiderivative is 𝐹𝐹(𝑥𝑥) = 1
3

𝑥𝑥3 + 𝐶𝐶, where we 
include the “+C” to indicate that F includes all of the possible antiderivatives of f .  

To identify a particular antiderivative of f , we must be provided a single value of the 
antiderivative F (this value is often called an initial condition). In the present 
example, suppose that condition is F(2) = 3; substituting the value of 2 for x in 
𝐹𝐹(𝑥𝑥) = 1

3
𝑥𝑥3 + 𝐶𝐶, you get 

3 =
1
3

(2)3 + 𝐶𝐶 

Solving for C, you get 

𝐶𝐶 = 3 −
8
3

=
1
3

 

Therefore, the particular antiderivative in this case is 

𝐹𝐹(𝑥𝑥) =
1
3

𝑥𝑥3 +
1
3

 

 

Investigation 3: For each of the following functions, sketch an accurate graph of the 
antiderivative that satisfies the given initial condition. In addition, sketch the graph 
of two additional antiderivatives of the given function, and state the corresponding 
initial conditions that each of them satisfy. If possible, find an algebraic formula for 
the antiderivative that satisfies the initial condition. 

a) original function: g(x) = |x| - 1;  
initial condition: G(-1) = 0;  
interval for sketch: [-2, 2] 

 

b) original function: h(x) = sin(x);  
initial condition: H(0) = 1;  
interval for sketch: [0, 4π] 
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c) original function:   �
𝑥𝑥2.                       if  0 ≤ 𝑥𝑥 ≤ 1
−(𝑥𝑥 − 2)2,        if  1 ≤ 𝑥𝑥 ≤ 2
0                            otherwise

 

initial condition: P(0) = 1;  

interval for sketch: [-1, 3] 

 

 

 

IV. Functions defined by integrals 

In Equation 1, you found an important rule that enables you to compute the value of 
the antiderivative F at a point b, provided that you know F(a) and can evaluate the 
definite integral from a to b of f . Again, that rule is 

𝐹𝐹(𝑏𝑏) = 𝐹𝐹(𝑎𝑎) + � 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥                                   𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏
𝑏𝑏

𝑎𝑎
 

 

In several examples, you have used this formula to compute several different values 
of F(b) and then plotted the points (b, F(b)) to assist us in generating an accurate 
graph of F. That suggests that we may want to think of b, the upper limit of 
integration, as a variable itself. To that end, we introduce the idea of an integral 
function, a function whose formula involves a definite integral. 

Given a continuous function f , we define the corresponding integral function A 
according to the rule 

𝐴𝐴(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑥𝑥

𝑎𝑎

 

Note particularly that because you are using the variable x as the independent 
variable in the function A, and x determines the other endpoint of the interval over 
which you integrate (starting from a), you need to use a variable other than x as the 
variable of integration. A standard choice is t, but any variable other than x is 
acceptable. 

   One way to think of the function A is as the “net-signed area from a up to x” 
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function, where you consider the region bounded by y = f (t) on the relevant 
interval. For example, in the figure below, there is a given function f pictured at left, 
and its corresponding area function at the right 

 

Notice that the function A measures the net-signed area from t = 0 to t = x bounded 
by the curve y = f (t) ; this value is then reported as the corresponding height on the 
graph of y = A(x) . At http://gvsu.edu/s/cz, there is a java applet that brings the 
static picture above to life.  

The choice of a is somewhat arbitrary. In the activity that follows, we explore how 
the value of a affects the graph of the integral function, as well as some additional 
related issues. 

 

Investigation 4: Suppose that g is given by the graph at left in Figure 5.5 and that A is 
the corresponding integral function defined by 𝐴𝐴(𝑥𝑥) = ∫ 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡.𝑥𝑥

1  

 

 

http://gvsu.edu/s/cz
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a) On what interval(s) is A an increasing function? On what intervals is A 
decreasing?  Why? 

 

b) On what interval(s) do you think A is concave up? concave down? Why? 

 

c) At what point(s) does A have a relative minimum? a relative maximum? 

 

d) Use the given information to determine the exact values of A(0), A(1), A(2), A(3), 
A(4), A(5), and A(6). 

 

e) Based on your responses to all of the preceding questions, sketch a complete and 
accurate graph of y = A(x) on the axes provided, being sure to indicate the behavior 
of A for x < 0 and x > 6. 

 

f) How does the graph of B compare to A if B is instead defined by 𝐵𝐵(𝑥𝑥) = ∫ 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑡𝑡𝑥𝑥
0  
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V. Practice 

1. A moving particle has its velocity given by the quadratic function v pictured 
below. In addition, it is given that 𝐴𝐴1 = 7

6
 and 𝐵𝐵1 = 8

3
, as well as that for the 

corresponding position function s, s(0) = 0.5. 

 

a) Use the given information to determine s(1), s(3), s(5), and s(6). 

 

b) On what interval(s) is s increasing? On what interval(s) is s decreasing? 

 

c) On what interval(s) is s concave up? On what interval(s) is s concave down? 

 

d) Sketch an accurate, labeled graph of s on the axes above right. 

 

e) Note that 𝑣𝑣(𝑡𝑡) = −2 + 1
2

(𝑡𝑡 − 3)2. Find a formula for s. 
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2. A person exercising on a treadmill experiences different levels of resistance and 
thus burns calories at different rates, depending on the treadmill’s setting. In one 
workout, the rate at which a person is burning calories is given by the piecewise 
constant function c pictured below. Note that the units on c are “calories per 
minute.” 

 

a) Let C be an antiderivative of c. What does the function C measure? What are its 
units? 

 

b) Assume that C(0) = 0.  Determine the exact value of C(t)  at the values t = 5, 10, 
15, 20, 25, 30. 

 

c) Sketch an accurate graph of C on the axes provided above right. Be certain to label 
the scale on the vertical axis. 
 

d) Determine a formula for C that does not involve an integral and is valid for 0 ≤
𝑡𝑡 ≤ 10. 

 

 

 

 



3.3b Evaluating Integrals Page 12 
 

3. Consider the piecewise linear function f given below. Let the functions A, B, and C 
be defined by the rules 𝐴𝐴(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡, 𝐵𝐵(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡, and 𝐶𝐶(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝑥𝑥

1
𝑥𝑥

0
𝑥𝑥

−1 . 

 

 

a) For the values x = -1, 0, 1, . . . , 6, make a table that lists corresponding values of 
A(x), B(x), and C(x). 

 

b) On the axes provided above right, sketch the graphs of A, B, and C. 

 

c) How are the graphs of A, B, and C related? 

 

d) How would you best describe the relationship between the function A and the 
function f ? 

 

 

VI. Assessment – Khan Academy 

1. Complete the first two online practice exercises in the Fundamental Theorem of Calculus 
unit of Khan Academy’s AP Calculus AB course: https://www.khanacademy.org/math/ap-
calculus-ab/fundamental-theorem-of-calculus-ab?t=practice  

 

https://www.khanacademy.org/math/ap-calculus-ab/fundamental-theorem-of-calculus-ab?t=practice
https://www.khanacademy.org/math/ap-calculus-ab/fundamental-theorem-of-calculus-ab?t=practice

