\qquad

Open the TI-Nspire document Definite_Integral.

In this activity, you will use a graphical representation to explore the definite integral of a continuous function. You will change the upper and lower limits, a and b, of the integral $\int_{a}^{b} f(x) d x$ and observe the resulting changes in the graph and the value of the definite integral.

Definite Integral

Move points a and b along the x-axis and observe the changes in the
definite integral.

Move to page 1.2.

Press ctrl and ctri \langle to

navigate through the lesson.

1. The graph shown is of the function $y=f(x)$. The definite integral of $f(x)$ from a to b is given by $\int_{a}^{b} f(x) d x$. For example, $\int_{0}^{2} f(x) d x$ is the definite integral of $f(x)$ from 0 to 2 , or between $x=0$ and $x=2$.

Drag points a and b along the x-axis to determine the values of the following definite integrals, where f is the function shown in the graph.
a. $\int_{0}^{2} f(x) d x=$ \qquad
b. $\int_{-3}^{2} f(x) d x=$ \qquad
c. $\int_{-3}^{-2} f(x) d x=$ \qquad
2. Drag point a to -3 and move point b to determine the following:
a. For what values of b is $\int_{-3}^{b} f(x) d x$ positive? What do you observe about the shaded region and the graph of f when $\int_{-3}^{b} f(x) d x$ is positive?
b. For what values of b is $\int_{-3}^{b} f(x) d x$ negative? What do you observe about the shaded region and the graph of f when $\int_{-3}^{b} f(x) d x$ is negative?
c. For what values of b does $\int_{-3}^{b} f(x) d x=0$? What do you observe about the shaded region and the graph of f when $\int_{-3}^{b} f(x) d x=0$?

Definite Integral
 Student Activity

3. For the function f pictured on page 1.2, under what conditions of a and b in $[-5,5]$ will the definite integral $\int_{a}^{b} f(x) d x$ be positive? Negative? Zero? Explain your thinking.

Move to page 2.2.

4. The graph on page 2.2 is of a new function $f(x)$ and the definite integral $\int_{a}^{b} f(x) d x$. Drag point a to -3 (if a is not already positioned at -3).
a. Without dragging point b, for what values of b do you think $\int_{-3}^{b} f(x) d x$ will be positive? Negative? Zero? Explain your predictions.
b. Drag point b to test your predictions. Describe what you observed in the graph of f that confirmed or contradicted your prediction.
5. For the function $f(x)$ pictured on page 2.2 , under what conditions of a and b in $[-5,5]$ will the definite integral $\int_{a}^{b} f(x) d x$ be positive? Negative? Zero? Explain your thinking.
6. Based on your observations on pages 1.2 and 2.2, for any continuous function f on an interval $[c, d]$ and for a and b in $[c, d]$, when will the definite integral $\int_{a}^{b} f(x) d x$ be positive? Negative? Zero? Clearly explain your generalization.
7. The definite integral $\int_{a}^{b} f(x) d x$ is often described as "the area under the curve $y=f(x)$ between $x=a$ and $x=b . "$ What problems do you see with this definition?
