Pre-Calculus Reference Sheet

Sequences and Series

Arithmetic sequence:
$$a_n = a_1 + (n-1)d$$

Arithmetic series: $S_n = \frac{n}{2}(a_1 + a_n)$
Geometric sequence: $a_n = a_1r^{n-1}$ or $a_n = a_{n-1}r$
Geometric series: $S_n = \frac{a_1 - a_1r^n}{1 - r}$, where $r \neq 1$
Infinite Geometric series: $\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}$, if $-1 < r < 1$

(where a_1 is the first term, n is the number of the term, d is the common difference, r is the common ratio, a_n is the *n*th term and S_n is the sum of the first *n* terms)

General Formula for Growth and Decay

 $A = A_0 e^{kt}$

(where A is the amount at the time t, A_0 is the amount at t = 0, and k is a constant)

 $e \approx 2.718$

Descriptive Statistics

For a set of paired data $\{(x_1, y_1), (x_2, y_2) ..., (x_n, y_n)\}$:

correlation
coefficient =
$$\frac{n(x_1y_1 + \dots + x_ny_n) - (x_1 + \dots + x_n)(y_1 + \dots + y_n)}{\sqrt{\{[n(x_1^2 + \dots + x_n^2) - (x_1 + \dots + x_n)^2][n(y_1^2 + \dots + y_n^2) - (y_1 + \dots + y_n)^2]\}}}$$

The equation of the least squares regression line for the data is $y = \overline{y} + b(x - \overline{x})$, where \overline{x} and \overline{y} are the means of the x and y values and

$$b = \frac{n(x_1y_1 + \dots + x_ny_n) - (x_1 + \dots + x_n)(y_1 + \dots + y_n)}{n(x_1^2 + \dots + x_n^2) - (x_1 + \dots + x_n)^2}$$

Pre-Calculus Reference Sheet

Conic Section		Equation	Characteristics
Circle	(x, y)	$(x-h)^2 + (y-k)^2 = r^2$	Center (<i>h</i> , <i>k</i>) radius <i>r</i>
Parabola	$(h, k) \xrightarrow{Y} (h, k) \xrightarrow{X} (h, $	$y = a(x-h)^2 + k$	axis of symmetry $x = h$ directrix $y = k - \frac{1}{4a}$ focus $(h, k + \frac{1}{4a})$
	V(h,k)	$x = a(y-k)^2 + h$	axis of symmetry $y = k$ directrix $x = h - \frac{1}{4a}$ focus $(h + \frac{1}{4a}, k)$
Ellipse	b $C(h,k)$ a x	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	foci $(h \pm c, k)$, where $c^2 = a^2 - b^2$
	y a C(h,k) b x	$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$	foci $(h, k \pm c)$, where $c^2 = a^2 - b^2$
Hyperbola	(h, k) (h, k) ($\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	foci $(h \pm c, k)$, where $c^2 = a^2 + b^2$
	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	foci $(h, k \pm c)$, where $c^2 = a^2 + b^2$

Pre-Calculus Reference Sheet

 $x + yi = r(\cos\theta + i\sin\theta)$